File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Quasi-least-squares finite element method for steady flow and heat transfer with system rotation

TitleQuasi-least-squares finite element method for steady flow and heat transfer with system rotation
Authors
KeywordsConvergence Analysis
Heat Transfer
Quasi-Least-Squares Finite Element Scheme
Steady Navier-Stoke Equations
System Rotation
Issue Date2006
PublisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00211/index.htm
Citation
Numerische Mathematik, 2006, v. 104 n. 3, p. 377-411 How to Cite?
AbstractTwo quasi-least-squares finite element schemes based on L 2 inner product are proposed to solve a steady Navier-Stokes equations, coupled to the energy equation by the Boussinesq approximation and augmented by a Coriolis forcing term to account for system rotation. The resulting nonlinear systems are linearized around a characteristic state, resulting in linearized least-squares models that yield algebraic systems with symmetric positive definite coefficient matrices. Existence of solutions are investigated and a priori error estimates are obtained. The performance of the formulation is illustrated by using a direct iteration procedure to treat the nonlinearities and shown theoretical convergent rate for general initial guess. © Springer-Verlag 2006.
Persistent Identifierhttp://hdl.handle.net/10722/156877
ISSN
2015 Impact Factor: 1.813
2015 SCImago Journal Rankings: 1.956
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorYang, Den_US
dc.contributor.authorWang, Len_US
dc.date.accessioned2012-08-08T08:44:23Z-
dc.date.available2012-08-08T08:44:23Z-
dc.date.issued2006en_US
dc.identifier.citationNumerische Mathematik, 2006, v. 104 n. 3, p. 377-411en_US
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/156877-
dc.description.abstractTwo quasi-least-squares finite element schemes based on L 2 inner product are proposed to solve a steady Navier-Stokes equations, coupled to the energy equation by the Boussinesq approximation and augmented by a Coriolis forcing term to account for system rotation. The resulting nonlinear systems are linearized around a characteristic state, resulting in linearized least-squares models that yield algebraic systems with symmetric positive definite coefficient matrices. Existence of solutions are investigated and a priori error estimates are obtained. The performance of the formulation is illustrated by using a direct iteration procedure to treat the nonlinearities and shown theoretical convergent rate for general initial guess. © Springer-Verlag 2006.en_US
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00211/index.htmen_US
dc.relation.ispartofNumerische Mathematiken_US
dc.subjectConvergence Analysisen_US
dc.subjectHeat Transferen_US
dc.subjectQuasi-Least-Squares Finite Element Schemeen_US
dc.subjectSteady Navier-Stoke Equationsen_US
dc.subjectSystem Rotationen_US
dc.titleQuasi-least-squares finite element method for steady flow and heat transfer with system rotationen_US
dc.typeArticleen_US
dc.identifier.emailWang, L: lqwang@hkucc.hku.hken_US
dc.identifier.authorityWang, L=rp00184en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/s00211-006-0019-0en_US
dc.identifier.scopuseid_2-s2.0-33846969873en_US
dc.identifier.hkuros123392-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33846969873&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume104en_US
dc.identifier.issue3en_US
dc.identifier.spage377en_US
dc.identifier.epage411en_US
dc.identifier.isiWOS:000240104800005-
dc.publisher.placeGermanyen_US
dc.identifier.scopusauthoridYang, D=7404801740en_US
dc.identifier.scopusauthoridWang, L=35235288500en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats