File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.automatica.2006.06.016
- Scopus: eid_2-s2.0-33748924329
- WOS: WOS:000241615200021
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Robust stabilization of Markovian delay systems with delay-dependent exponential estimates
Title | Robust stabilization of Markovian delay systems with delay-dependent exponential estimates |
---|---|
Authors | |
Keywords | Exponential Estimates Linear Matrix Inequalities (Lmis) Markovian Jumping Systems Robust Stabilization Time-Delay Systems Uncertain Systems |
Issue Date | 2006 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/automatica |
Citation | Automatica, 2006, v. 42 n. 11, p. 2001-2008 How to Cite? |
Abstract | A sufficient condition for the exponential estimates of a class of Markovian systems with time delay is established for the first time in terms of the linear matrix inequality (LMI) technique. The estimating procedure is implemented by solving an LMI. The proposed condition is also extended to the uncertain case. Moreover, a state feedback stabilizing controller which makes the closed-loop system exponentially stable with a prescribed lower bound of decay rate is designed. Numerical examples are provided to illustrate the effectiveness of the theoretical results. © 2006 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/156846 |
ISSN | 2023 Impact Factor: 4.8 2023 SCImago Journal Rankings: 3.502 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shu, Z | en_US |
dc.contributor.author | Lam, J | en_US |
dc.contributor.author | Xu, S | en_US |
dc.date.accessioned | 2012-08-08T08:44:14Z | - |
dc.date.available | 2012-08-08T08:44:14Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.citation | Automatica, 2006, v. 42 n. 11, p. 2001-2008 | en_US |
dc.identifier.issn | 0005-1098 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156846 | - |
dc.description.abstract | A sufficient condition for the exponential estimates of a class of Markovian systems with time delay is established for the first time in terms of the linear matrix inequality (LMI) technique. The estimating procedure is implemented by solving an LMI. The proposed condition is also extended to the uncertain case. Moreover, a state feedback stabilizing controller which makes the closed-loop system exponentially stable with a prescribed lower bound of decay rate is designed. Numerical examples are provided to illustrate the effectiveness of the theoretical results. © 2006 Elsevier Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/automatica | en_US |
dc.relation.ispartof | Automatica | en_US |
dc.subject | Exponential Estimates | en_US |
dc.subject | Linear Matrix Inequalities (Lmis) | en_US |
dc.subject | Markovian Jumping Systems | en_US |
dc.subject | Robust Stabilization | en_US |
dc.subject | Time-Delay Systems | en_US |
dc.subject | Uncertain Systems | en_US |
dc.title | Robust stabilization of Markovian delay systems with delay-dependent exponential estimates | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lam, J:james.lam@hku.hk | en_US |
dc.identifier.authority | Lam, J=rp00133 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.automatica.2006.06.016 | en_US |
dc.identifier.scopus | eid_2-s2.0-33748924329 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33748924329&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 42 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.spage | 2001 | en_US |
dc.identifier.epage | 2008 | en_US |
dc.identifier.isi | WOS:000241615200021 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Shu, Z=25652150400 | en_US |
dc.identifier.scopusauthorid | Lam, J=7201973414 | en_US |
dc.identifier.scopusauthorid | Xu, S=7404438591 | en_US |
dc.identifier.issnl | 0005-1098 | - |