File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.chaos.2005.10.066
- Scopus: eid_2-s2.0-33748416513
- WOS: WOS:000241350200017
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: New interaction solutions of multiply periodic, quasi-periodic and non-periodic waves for the (n + 1)-dimensional double sine-Gordon equations
Title | New interaction solutions of multiply periodic, quasi-periodic and non-periodic waves for the (n + 1)-dimensional double sine-Gordon equations |
---|---|
Authors | |
Issue Date | 2007 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos |
Citation | Chaos, Solitons And Fractals, 2007, v. 31 n. 5, p. 1213-1222 How to Cite? |
Abstract | New exact solutions with built-in arbitrary functions for the (n + 1)-dimensional double sine-Gordon equation are studied by means of auxiliary solutions of the cubic nonlinear Klein-Gordon (CNKG) fields. By a proper selection of the arbitrary functions and the appropriate solutions of the CNKG systems, new solutions including periodic-solitoffs, periodic-twisted kinks, quasi-periodic and non-periodic waves are obtained. © 2005 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/156842 |
ISSN | 2023 Impact Factor: 5.3 2023 SCImago Journal Rankings: 1.349 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, HC | en_US |
dc.contributor.author | Lou, SY | en_US |
dc.contributor.author | Chow, KW | en_US |
dc.date.accessioned | 2012-08-08T08:44:12Z | - |
dc.date.available | 2012-08-08T08:44:12Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.citation | Chaos, Solitons And Fractals, 2007, v. 31 n. 5, p. 1213-1222 | en_US |
dc.identifier.issn | 0960-0779 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156842 | - |
dc.description.abstract | New exact solutions with built-in arbitrary functions for the (n + 1)-dimensional double sine-Gordon equation are studied by means of auxiliary solutions of the cubic nonlinear Klein-Gordon (CNKG) fields. By a proper selection of the arbitrary functions and the appropriate solutions of the CNKG systems, new solutions including periodic-solitoffs, periodic-twisted kinks, quasi-periodic and non-periodic waves are obtained. © 2005 Elsevier Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos | en_US |
dc.relation.ispartof | Chaos, Solitons and Fractals | en_US |
dc.title | New interaction solutions of multiply periodic, quasi-periodic and non-periodic waves for the (n + 1)-dimensional double sine-Gordon equations | en_US |
dc.type | Article | en_US |
dc.identifier.email | Chow, KW:kwchow@hku.hk | en_US |
dc.identifier.authority | Chow, KW=rp00112 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.chaos.2005.10.066 | en_US |
dc.identifier.scopus | eid_2-s2.0-33748416513 | en_US |
dc.identifier.hkuros | 128216 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33748416513&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 31 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.spage | 1213 | en_US |
dc.identifier.epage | 1222 | en_US |
dc.identifier.isi | WOS:000241350200017 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Hu, HC=26324834400 | en_US |
dc.identifier.scopusauthorid | Lou, SY=7201944662 | en_US |
dc.identifier.scopusauthorid | Chow, KW=13605209900 | en_US |
dc.identifier.issnl | 0960-0779 | - |