File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s11045-005-1678-1
- Scopus: eid_2-s2.0-21844434176
- WOS: WOS:000230263600003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: H ∞ model reduction of 2-D dingular roesser models
Title | H ∞ model reduction of 2-D dingular roesser models |
---|---|
Authors | |
Keywords | 2-D Singular Systems Bounded Realness H ∞ Model Reduction Linear Matrix Inequality Roesser Models |
Issue Date | 2005 |
Publisher | Springer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0923-6082 |
Citation | Multidimensional Systems And Signal Processing, 2005, v. 16 n. 3, p. 285-304 How to Cite? |
Abstract | This paper discusses the problem of H ∞ model reduction for linear discrete time 2-D singular Roesser models (2-D SRM). A condition for bounded realness is established for 2-D SRM in terms of linear matrix inequalities (LMIs). Based on this, a sufficient condition for the solvability of the H ∞ model reduction problem is obtained via a group of LMIs and a set of coupling non-convex rank constraints. An explicit parameterization of the desired reduced-order models is presented. Particularly, a simple LMI condition without rank constraints is proposed for the zeroth-order H ∞ approximation problem. Finally, a numerical example is given to illustrate the applicability of the proposed approach. © 2005 Springer Science+Business Media, Inc. |
Persistent Identifier | http://hdl.handle.net/10722/156770 |
ISSN | 2023 Impact Factor: 1.7 2023 SCImago Journal Rankings: 0.499 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xu, H | en_US |
dc.contributor.author | Zou, Y | en_US |
dc.contributor.author | Xu, S | en_US |
dc.contributor.author | Lam, J | en_US |
dc.contributor.author | Wang, Q | en_US |
dc.date.accessioned | 2012-08-08T08:43:54Z | - |
dc.date.available | 2012-08-08T08:43:54Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.citation | Multidimensional Systems And Signal Processing, 2005, v. 16 n. 3, p. 285-304 | en_US |
dc.identifier.issn | 0923-6082 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156770 | - |
dc.description.abstract | This paper discusses the problem of H ∞ model reduction for linear discrete time 2-D singular Roesser models (2-D SRM). A condition for bounded realness is established for 2-D SRM in terms of linear matrix inequalities (LMIs). Based on this, a sufficient condition for the solvability of the H ∞ model reduction problem is obtained via a group of LMIs and a set of coupling non-convex rank constraints. An explicit parameterization of the desired reduced-order models is presented. Particularly, a simple LMI condition without rank constraints is proposed for the zeroth-order H ∞ approximation problem. Finally, a numerical example is given to illustrate the applicability of the proposed approach. © 2005 Springer Science+Business Media, Inc. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0923-6082 | en_US |
dc.relation.ispartof | Multidimensional Systems and Signal Processing | en_US |
dc.subject | 2-D Singular Systems | en_US |
dc.subject | Bounded Realness | en_US |
dc.subject | H ∞ Model Reduction | en_US |
dc.subject | Linear Matrix Inequality | en_US |
dc.subject | Roesser Models | en_US |
dc.title | H ∞ model reduction of 2-D dingular roesser models | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lam, J:james.lam@hku.hk | en_US |
dc.identifier.authority | Lam, J=rp00133 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1007/s11045-005-1678-1 | en_US |
dc.identifier.scopus | eid_2-s2.0-21844434176 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-21844434176&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 16 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.spage | 285 | en_US |
dc.identifier.epage | 304 | en_US |
dc.identifier.isi | WOS:000230263600003 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Xu, H=8908987900 | en_US |
dc.identifier.scopusauthorid | Zou, Y=7402166773 | en_US |
dc.identifier.scopusauthorid | Xu, S=7404438591 | en_US |
dc.identifier.scopusauthorid | Lam, J=7201973414 | en_US |
dc.identifier.scopusauthorid | Wang, Q=7406912110 | en_US |
dc.identifier.citeulike | 247359 | - |
dc.identifier.issnl | 0923-6082 | - |