File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: H ∞ model reduction of 2-D dingular roesser models

TitleH ∞ model reduction of 2-D dingular roesser models
Authors
Keywords2-D Singular Systems
Bounded Realness
H ∞ Model Reduction
Linear Matrix Inequality
Roesser Models
Issue Date2005
PublisherSpringer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0923-6082
Citation
Multidimensional Systems And Signal Processing, 2005, v. 16 n. 3, p. 285-304 How to Cite?
AbstractThis paper discusses the problem of H ∞ model reduction for linear discrete time 2-D singular Roesser models (2-D SRM). A condition for bounded realness is established for 2-D SRM in terms of linear matrix inequalities (LMIs). Based on this, a sufficient condition for the solvability of the H ∞ model reduction problem is obtained via a group of LMIs and a set of coupling non-convex rank constraints. An explicit parameterization of the desired reduced-order models is presented. Particularly, a simple LMI condition without rank constraints is proposed for the zeroth-order H ∞ approximation problem. Finally, a numerical example is given to illustrate the applicability of the proposed approach. © 2005 Springer Science+Business Media, Inc.
Persistent Identifierhttp://hdl.handle.net/10722/156770
ISSN
2014 Impact Factor: 1.617
2014 SCImago Journal Rankings: 0.500
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorXu, Hen_US
dc.contributor.authorZou, Yen_US
dc.contributor.authorXu, Sen_US
dc.contributor.authorLam, Jen_US
dc.contributor.authorWang, Qen_US
dc.date.accessioned2012-08-08T08:43:54Z-
dc.date.available2012-08-08T08:43:54Z-
dc.date.issued2005en_US
dc.identifier.citationMultidimensional Systems And Signal Processing, 2005, v. 16 n. 3, p. 285-304en_US
dc.identifier.issn0923-6082en_US
dc.identifier.urihttp://hdl.handle.net/10722/156770-
dc.description.abstractThis paper discusses the problem of H ∞ model reduction for linear discrete time 2-D singular Roesser models (2-D SRM). A condition for bounded realness is established for 2-D SRM in terms of linear matrix inequalities (LMIs). Based on this, a sufficient condition for the solvability of the H ∞ model reduction problem is obtained via a group of LMIs and a set of coupling non-convex rank constraints. An explicit parameterization of the desired reduced-order models is presented. Particularly, a simple LMI condition without rank constraints is proposed for the zeroth-order H ∞ approximation problem. Finally, a numerical example is given to illustrate the applicability of the proposed approach. © 2005 Springer Science+Business Media, Inc.en_US
dc.languageengen_US
dc.publisherSpringer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0923-6082en_US
dc.relation.ispartofMultidimensional Systems and Signal Processingen_US
dc.subject2-D Singular Systemsen_US
dc.subjectBounded Realnessen_US
dc.subjectH ∞ Model Reductionen_US
dc.subjectLinear Matrix Inequalityen_US
dc.subjectRoesser Modelsen_US
dc.titleH ∞ model reduction of 2-D dingular roesser modelsen_US
dc.typeArticleen_US
dc.identifier.emailLam, J:james.lam@hku.hken_US
dc.identifier.authorityLam, J=rp00133en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/s11045-005-1678-1en_US
dc.identifier.scopuseid_2-s2.0-21844434176en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-21844434176&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume16en_US
dc.identifier.issue3en_US
dc.identifier.spage285en_US
dc.identifier.epage304en_US
dc.identifier.isiWOS:000230263600003-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridXu, H=8908987900en_US
dc.identifier.scopusauthoridZou, Y=7402166773en_US
dc.identifier.scopusauthoridXu, S=7404438591en_US
dc.identifier.scopusauthoridLam, J=7201973414en_US
dc.identifier.scopusauthoridWang, Q=7406912110en_US
dc.identifier.citeulike247359-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats