File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Robust output feedback stabilization for two-dimensional continuous systems in Roesser form

TitleRobust output feedback stabilization for two-dimensional continuous systems in Roesser form
Authors
KeywordsLinear Matrix Inequality
Output Feedback
Robust Stabilization
Two-Dimensional Continuous Systems
Uncertain Systems
Issue Date2004
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/aml
Citation
Applied Mathematics Letters, 2004, v. 17 n. 11, p. 1331-1341 How to Cite?
AbstractThis paper considers the problem of robust stabilization via dynamic output feedbackcontrollers for uncertain two-dimensional continuous systems described by the Roesser's state space model. The parameter uncertainties are assumed to be norm-bounded appearing in all the matrices of the system model. A sufficient condition for the existence of dynamic output feedback controllers guaranteeing the asymptotic stability of the closed-loop system for all admissible uncertainties is proposed. A desired dynamic output feedback controller can be constructed by solving a set of linear matrix inequalities. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the proposed method. © 2004 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156731
ISSN
2015 Impact Factor: 1.659
2015 SCImago Journal Rankings: 1.141
References

 

DC FieldValueLanguage
dc.contributor.authorLam, Jen_US
dc.contributor.authorXu, Sen_US
dc.contributor.authorZou, Yen_US
dc.contributor.authorLin, Zen_US
dc.contributor.authorGalkowski, Ken_US
dc.date.accessioned2012-08-08T08:43:44Z-
dc.date.available2012-08-08T08:43:44Z-
dc.date.issued2004en_US
dc.identifier.citationApplied Mathematics Letters, 2004, v. 17 n. 11, p. 1331-1341en_US
dc.identifier.issn0893-9659en_US
dc.identifier.urihttp://hdl.handle.net/10722/156731-
dc.description.abstractThis paper considers the problem of robust stabilization via dynamic output feedbackcontrollers for uncertain two-dimensional continuous systems described by the Roesser's state space model. The parameter uncertainties are assumed to be norm-bounded appearing in all the matrices of the system model. A sufficient condition for the existence of dynamic output feedback controllers guaranteeing the asymptotic stability of the closed-loop system for all admissible uncertainties is proposed. A desired dynamic output feedback controller can be constructed by solving a set of linear matrix inequalities. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the proposed method. © 2004 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/amlen_US
dc.relation.ispartofApplied Mathematics Lettersen_US
dc.subjectLinear Matrix Inequalityen_US
dc.subjectOutput Feedbacken_US
dc.subjectRobust Stabilizationen_US
dc.subjectTwo-Dimensional Continuous Systemsen_US
dc.subjectUncertain Systemsen_US
dc.titleRobust output feedback stabilization for two-dimensional continuous systems in Roesser formen_US
dc.typeArticleen_US
dc.identifier.emailLam, J:james.lam@hku.hken_US
dc.identifier.authorityLam, J=rp00133en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.aml.2004.04.004en_US
dc.identifier.scopuseid_2-s2.0-12244275003en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-12244275003&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume17en_US
dc.identifier.issue11en_US
dc.identifier.spage1331en_US
dc.identifier.epage1341en_US
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridLam, J=7201973414en_US
dc.identifier.scopusauthoridXu, S=7404438591en_US
dc.identifier.scopusauthoridZou, Y=7402166773en_US
dc.identifier.scopusauthoridLin, Z=7404229052en_US
dc.identifier.scopusauthoridGalkowski, K=7003620439en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats