File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: H ∞ model reduction for singular systems: continuous-time case
  • Basic View
  • Metadata View
  • XML View
TitleH ∞ model reduction for singular systems: continuous-time case
 
AuthorsXu, S1
Lam, J1
Liu, W2
Zhang, Q3
 
Issue Date2003
 
PublisherThe Institution of Engineering and Technology. The Journal's web site is located at http://www.ietdl.org/IP-CTA
 
CitationIee Proceedings: Control Theory And Applications, 2003, v. 150 n. 6, p. 637-641 [How to Cite?]
DOI: http://dx.doi.org/10.1049/ip-cta:20030815
 
AbstractThe problem of H ∞ model reduction for linear singular systems in the continuous-time case is considered. The objective is to find a reduced-order system such that the associated error system is admissible and satisfies a prescribed H ∞ norm bound constraint. Necessary and sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint set. An explicit parametrisation of all reduced-order systems is presented for the case when the related LMIs are feasible. A simple LMI condition without rank constraint is derived for the zeroth-order H ∞ approximation problem. All these results are obtained without decomposing the original system, which makes the design procedure simple and direct.
 
ISSN1350-2379
 
DOIhttp://dx.doi.org/10.1049/ip-cta:20030815
 
ISI Accession Number IDWOS:000187991300009
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorXu, S
 
dc.contributor.authorLam, J
 
dc.contributor.authorLiu, W
 
dc.contributor.authorZhang, Q
 
dc.date.accessioned2012-08-08T08:43:37Z
 
dc.date.available2012-08-08T08:43:37Z
 
dc.date.issued2003
 
dc.description.abstractThe problem of H ∞ model reduction for linear singular systems in the continuous-time case is considered. The objective is to find a reduced-order system such that the associated error system is admissible and satisfies a prescribed H ∞ norm bound constraint. Necessary and sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint set. An explicit parametrisation of all reduced-order systems is presented for the case when the related LMIs are feasible. A simple LMI condition without rank constraint is derived for the zeroth-order H ∞ approximation problem. All these results are obtained without decomposing the original system, which makes the design procedure simple and direct.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationIee Proceedings: Control Theory And Applications, 2003, v. 150 n. 6, p. 637-641 [How to Cite?]
DOI: http://dx.doi.org/10.1049/ip-cta:20030815
 
dc.identifier.doihttp://dx.doi.org/10.1049/ip-cta:20030815
 
dc.identifier.epage641
 
dc.identifier.isiWOS:000187991300009
 
dc.identifier.issn1350-2379
 
dc.identifier.issue6
 
dc.identifier.scopuseid_2-s2.0-0347024339
 
dc.identifier.spage637
 
dc.identifier.urihttp://hdl.handle.net/10722/156708
 
dc.identifier.volume150
 
dc.languageeng
 
dc.publisherThe Institution of Engineering and Technology. The Journal's web site is located at http://www.ietdl.org/IP-CTA
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofIEE Proceedings: Control Theory and Applications
 
dc.relation.referencesReferences in Scopus
 
dc.titleH ∞ model reduction for singular systems: continuous-time case
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Xu, S</contributor.author>
<contributor.author>Lam, J</contributor.author>
<contributor.author>Liu, W</contributor.author>
<contributor.author>Zhang, Q</contributor.author>
<date.accessioned>2012-08-08T08:43:37Z</date.accessioned>
<date.available>2012-08-08T08:43:37Z</date.available>
<date.issued>2003</date.issued>
<identifier.citation>Iee Proceedings: Control Theory And Applications, 2003, v. 150 n. 6, p. 637-641</identifier.citation>
<identifier.issn>1350-2379</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/156708</identifier.uri>
<description.abstract>The problem of H &#8734; model reduction for linear singular systems in the continuous-time case is considered. The objective is to find a reduced-order system such that the associated error system is admissible and satisfies a prescribed H &#8734; norm bound constraint. Necessary and sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint set. An explicit parametrisation of all reduced-order systems is presented for the case when the related LMIs are feasible. A simple LMI condition without rank constraint is derived for the zeroth-order H &#8734; approximation problem. All these results are obtained without decomposing the original system, which makes the design procedure simple and direct.</description.abstract>
<language>eng</language>
<publisher>The Institution of Engineering and Technology. The Journal&apos;s web site is located at http://www.ietdl.org/IP-CTA</publisher>
<relation.ispartof>IEE Proceedings: Control Theory and Applications</relation.ispartof>
<title>H &#8734; model reduction for singular systems: continuous-time case</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1049/ip-cta:20030815</identifier.doi>
<identifier.scopus>eid_2-s2.0-0347024339</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-0347024339&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>150</identifier.volume>
<identifier.issue>6</identifier.issue>
<identifier.spage>637</identifier.spage>
<identifier.epage>641</identifier.epage>
<identifier.isi>WOS:000187991300009</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Curtin University of Technology, Perth
  3. Northeastern University China