File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling
  • Basic View
  • Metadata View
  • XML View
TitleSimulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling
 
AuthorsShen, YM1
Ng, CO2
Zheng, YH3
 
KeywordsK-Ε Turbulence Model
Submerged Bar
Vof Method
Wave Propagation
 
Issue Date2004
 
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/oceaneng
 
CitationOcean Engineering, 2004, v. 31 n. 1, p. 87-95 [How to Cite?]
DOI: http://dx.doi.org/10.1016/S0029-8018(03)00111-2
 
AbstractA two-equation k-ε turbulence model is used in this paper to simulate the propagation of cnoidal waves over a submerged bar, where the free surface is handled by the volume-of-fluid (VOF) method. Using a VOF partial-cell variable and a donor-acceptor method, the model is capable of treating irregular boundaries, including arbitrary bottom topography and internal obstacles, where the no-slip condition is satisfied. The model also allows the viscous sublayer to be modeled by a wall function approximation implemented in the grid nodes that are immediately adjacent to a wall boundary. The numerical model applied to the propagation of cnoidal waves over a submerged bar can produce results that are in general agreement with some laboratory measurements. Some remarks arising from the comparison between the computational and experimental results are presented. © 2003 Elsevier Ltd. All rights reserved.
 
ISSN0029-8018
2012 Impact Factor: 1.161
2012 SCImago Journal Rankings: 1.071
 
DOIhttp://dx.doi.org/10.1016/S0029-8018(03)00111-2
 
ISI Accession Number IDWOS:000187733000005
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorShen, YM
 
dc.contributor.authorNg, CO
 
dc.contributor.authorZheng, YH
 
dc.date.accessioned2012-08-08T08:43:35Z
 
dc.date.available2012-08-08T08:43:35Z
 
dc.date.issued2004
 
dc.description.abstractA two-equation k-ε turbulence model is used in this paper to simulate the propagation of cnoidal waves over a submerged bar, where the free surface is handled by the volume-of-fluid (VOF) method. Using a VOF partial-cell variable and a donor-acceptor method, the model is capable of treating irregular boundaries, including arbitrary bottom topography and internal obstacles, where the no-slip condition is satisfied. The model also allows the viscous sublayer to be modeled by a wall function approximation implemented in the grid nodes that are immediately adjacent to a wall boundary. The numerical model applied to the propagation of cnoidal waves over a submerged bar can produce results that are in general agreement with some laboratory measurements. Some remarks arising from the comparison between the computational and experimental results are presented. © 2003 Elsevier Ltd. All rights reserved.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationOcean Engineering, 2004, v. 31 n. 1, p. 87-95 [How to Cite?]
DOI: http://dx.doi.org/10.1016/S0029-8018(03)00111-2
 
dc.identifier.doihttp://dx.doi.org/10.1016/S0029-8018(03)00111-2
 
dc.identifier.epage95
 
dc.identifier.hkuros90382
 
dc.identifier.isiWOS:000187733000005
 
dc.identifier.issn0029-8018
2012 Impact Factor: 1.161
2012 SCImago Journal Rankings: 1.071
 
dc.identifier.issue1
 
dc.identifier.scopuseid_2-s2.0-0345448396
 
dc.identifier.spage87
 
dc.identifier.urihttp://hdl.handle.net/10722/156700
 
dc.identifier.volume31
 
dc.languageeng
 
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/oceaneng
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofOcean Engineering
 
dc.relation.referencesReferences in Scopus
 
dc.subjectK-Ε Turbulence Model
 
dc.subjectSubmerged Bar
 
dc.subjectVof Method
 
dc.subjectWave Propagation
 
dc.titleSimulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Shen, YM</contributor.author>
<contributor.author>Ng, CO</contributor.author>
<contributor.author>Zheng, YH</contributor.author>
<date.accessioned>2012-08-08T08:43:35Z</date.accessioned>
<date.available>2012-08-08T08:43:35Z</date.available>
<date.issued>2004</date.issued>
<identifier.citation>Ocean Engineering, 2004, v. 31 n. 1, p. 87-95</identifier.citation>
<identifier.issn>0029-8018</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/156700</identifier.uri>
<description.abstract>A two-equation k-&#949; turbulence model is used in this paper to simulate the propagation of cnoidal waves over a submerged bar, where the free surface is handled by the volume-of-fluid (VOF) method. Using a VOF partial-cell variable and a donor-acceptor method, the model is capable of treating irregular boundaries, including arbitrary bottom topography and internal obstacles, where the no-slip condition is satisfied. The model also allows the viscous sublayer to be modeled by a wall function approximation implemented in the grid nodes that are immediately adjacent to a wall boundary. The numerical model applied to the propagation of cnoidal waves over a submerged bar can produce results that are in general agreement with some laboratory measurements. Some remarks arising from the comparison between the computational and experimental results are presented. &#169; 2003 Elsevier Ltd. All rights reserved.</description.abstract>
<language>eng</language>
<publisher>Pergamon. The Journal&apos;s web site is located at http://www.elsevier.com/locate/oceaneng</publisher>
<relation.ispartof>Ocean Engineering</relation.ispartof>
<subject>K-&#917; Turbulence Model</subject>
<subject>Submerged Bar</subject>
<subject>Vof Method</subject>
<subject>Wave Propagation</subject>
<title>Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-&#949; turbulence modeling</title>
<type>Article</type>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1016/S0029-8018(03)00111-2</identifier.doi>
<identifier.scopus>eid_2-s2.0-0345448396</identifier.scopus>
<identifier.hkuros>90382</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-0345448396&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>31</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>87</identifier.spage>
<identifier.epage>95</identifier.epage>
<identifier.isi>WOS:000187733000005</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. Dalian University of Technology
  2. The University of Hong Kong
  3. Guangzhou Institute of Energy Conversion of the Chinese Academy of Sciences