File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Periodic waves in bimodal optical fibers

TitlePeriodic waves in bimodal optical fibers
Authors
KeywordsCoupled Non-Linear Schrödinger Equations
Hirota Method
Optical Fiber
Periodic Solutions
Issue Date2003
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/optcom
Citation
Optics Communications, 2003, v. 219 n. 1-6, p. 251-259 How to Cite?
AbstractWe consider coupled non-linear Schrödinger equations (CNLSE) which govern the propagation of non-linear waves in bimodal optical fibers. The non-linear transform of a dual-frequency signal is used to generate an ultra-short-pulse train. To predict the energy and width of pulses in the train, we derive three new types of travelling periodic-wave solutions, using the Hirota bilinear method. We also show that all the previously reported periodic wave solutions of CNLSE can be derived in a systematic way, using the Hirota method. © 2003 Published by Elsevier Science B.V.
Persistent Identifierhttp://hdl.handle.net/10722/156664
ISSN
2023 Impact Factor: 2.2
2023 SCImago Journal Rankings: 0.538
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_US
dc.contributor.authorNakkeeran, Ken_US
dc.contributor.authorMalomed, BAen_US
dc.date.accessioned2012-08-08T08:43:26Z-
dc.date.available2012-08-08T08:43:26Z-
dc.date.issued2003en_US
dc.identifier.citationOptics Communications, 2003, v. 219 n. 1-6, p. 251-259en_US
dc.identifier.issn0030-4018en_US
dc.identifier.urihttp://hdl.handle.net/10722/156664-
dc.description.abstractWe consider coupled non-linear Schrödinger equations (CNLSE) which govern the propagation of non-linear waves in bimodal optical fibers. The non-linear transform of a dual-frequency signal is used to generate an ultra-short-pulse train. To predict the energy and width of pulses in the train, we derive three new types of travelling periodic-wave solutions, using the Hirota bilinear method. We also show that all the previously reported periodic wave solutions of CNLSE can be derived in a systematic way, using the Hirota method. © 2003 Published by Elsevier Science B.V.en_US
dc.languageengen_US
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/optcomen_US
dc.relation.ispartofOptics Communicationsen_US
dc.rightsOptics Communications. Copyright © Elsevier BV.-
dc.subjectCoupled Non-Linear Schrödinger Equationsen_US
dc.subjectHirota Methoden_US
dc.subjectOptical Fiberen_US
dc.subjectPeriodic Solutionsen_US
dc.titlePeriodic waves in bimodal optical fibersen_US
dc.typeArticleen_US
dc.identifier.emailChow, KW: kwchow@hku.hken_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/S0030-4018(03)01319-1en_US
dc.identifier.scopuseid_2-s2.0-0037446754en_US
dc.identifier.hkuros79659-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0037446754&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume219en_US
dc.identifier.issue1-6en_US
dc.identifier.spage251en_US
dc.identifier.epage259en_US
dc.identifier.isiWOS:000182553400029-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridChow, KW=13605209900en_US
dc.identifier.scopusauthoridNakkeeran, K=7004188157en_US
dc.identifier.scopusauthoridMalomed, BA=35555126200en_US
dc.identifier.issnl0030-4018-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats