File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On a moving Griffith crack in anistropic piezoelectric solids

TitleOn a moving Griffith crack in anistropic piezoelectric solids
Authors
KeywordsCrack Branching
Electroelastic Field
Moving Crack
Piezoelectric Material
Stroh Formalism
Issue Date2002
PublisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00419/index.htm
Citation
Archive of Applied Mechanics, 2002, v. 72 n. 6-7, p. 458-469 How to Cite?
AbstractThe generalized plane problem of a finite Griffith crack moving with constant velocity in an anisotropic piezoelectric material is investigated. The combined mechanical and electrical loads are applied at infinity. Based on the extended Stroh formalism, the closed-form expressions for the electroelastic fields are obtained in a concise way. Numerical results for PZT-4 piezoelectric ceramic are given graphically. The effects on the hoop stress of the velocity of the crack and the electrical to mechanical load ratios are analyzed. The propagation orientation of a moving crack is also predicted in terms of the criterion of the maximum tensile stress. When the crack speed vanishes, the results of the present paper are in good agreement with those given previously in the literature.
Persistent Identifierhttp://hdl.handle.net/10722/156638
ISSN
2023 Impact Factor: 2.2
2023 SCImago Journal Rankings: 0.520
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorSoh, AKen_US
dc.contributor.authorLiu, JXen_US
dc.contributor.authorLee, KLen_US
dc.contributor.authorFang, DNen_US
dc.date.accessioned2012-08-08T08:43:19Z-
dc.date.available2012-08-08T08:43:19Z-
dc.date.issued2002en_US
dc.identifier.citationArchive of Applied Mechanics, 2002, v. 72 n. 6-7, p. 458-469en_US
dc.identifier.issn0939-1533en_US
dc.identifier.urihttp://hdl.handle.net/10722/156638-
dc.description.abstractThe generalized plane problem of a finite Griffith crack moving with constant velocity in an anisotropic piezoelectric material is investigated. The combined mechanical and electrical loads are applied at infinity. Based on the extended Stroh formalism, the closed-form expressions for the electroelastic fields are obtained in a concise way. Numerical results for PZT-4 piezoelectric ceramic are given graphically. The effects on the hoop stress of the velocity of the crack and the electrical to mechanical load ratios are analyzed. The propagation orientation of a moving crack is also predicted in terms of the criterion of the maximum tensile stress. When the crack speed vanishes, the results of the present paper are in good agreement with those given previously in the literature.en_US
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00419/index.htmen_US
dc.relation.ispartofArchive of Applied Mechanicsen_US
dc.subjectCrack Branchingen_US
dc.subjectElectroelastic Fielden_US
dc.subjectMoving Cracken_US
dc.subjectPiezoelectric Materialen_US
dc.subjectStroh Formalismen_US
dc.titleOn a moving Griffith crack in anistropic piezoelectric solidsen_US
dc.typeArticleen_US
dc.identifier.emailSoh, AK: aksoh@hkucc.hku.hken_US
dc.identifier.authoritySoh, AK=rp00170en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/s00419-002-0227-8en_US
dc.identifier.scopuseid_2-s2.0-0036809797en_US
dc.identifier.hkuros78580-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0036809797&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume72en_US
dc.identifier.issue6-7en_US
dc.identifier.spage458en_US
dc.identifier.epage469en_US
dc.identifier.isiWOS:000178971200007-
dc.publisher.placeGermanyen_US
dc.identifier.scopusauthoridSoh, AK=7006795203en_US
dc.identifier.scopusauthoridLiu, JX=36063914500en_US
dc.identifier.scopusauthoridLee, KL=7501505110en_US
dc.identifier.scopusauthoridFang, DN=7202133612en_US
dc.identifier.issnl0939-1533-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats