File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Upper and lower bounds for evaluation of nonlinear fracture parameters
  • Basic View
  • Metadata View
  • XML View
TitleUpper and lower bounds for evaluation of nonlinear fracture parameters
 
AuthorsSze, KY1
Wu, CC
Huang, YQ
 
KeywordsBound Theorems
Finite Element Method
I*-Integral
J-Integral
Nonlinear Fracture
 
Issue Date1999
 
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/engfracmech
 
CitationEngineering Fracture Mechanics, 1999, v. 62 n. 2-3, p. 185-201 [How to Cite?]
 
AbstractBound theorems for estimating small strain nonlinear fracture parameters are proposed. It is found that the lower bound for the J-integral can be obtained by a compatible displacement finite element method. On the other hand, the upper bound of the I*-integral, which is the dual counterpart of the J-integral, can be obtained by an equilibrium finite element method. To verify the theorems and avoid the difficulty of designing equilibrium finite element models, the popular Pian-Sumihara hybrid stress model is modified by incorporating a penalty-equilibrium constraint. Moreover, an incremental formulation of the I*-integral for nonlinear finite element computation is developed. Numerical examples on different crack and loading configurations are presented. All the results indicate the validity of the theorems. © 1999 Elsevier Science Ltd. All rights reserved.
 
ISSN0013-7944
2012 Impact Factor: 1.413
2012 SCImago Journal Rankings: 1.251
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorSze, KY
 
dc.contributor.authorWu, CC
 
dc.contributor.authorHuang, YQ
 
dc.date.accessioned2012-08-08T08:42:42Z
 
dc.date.available2012-08-08T08:42:42Z
 
dc.date.issued1999
 
dc.description.abstractBound theorems for estimating small strain nonlinear fracture parameters are proposed. It is found that the lower bound for the J-integral can be obtained by a compatible displacement finite element method. On the other hand, the upper bound of the I*-integral, which is the dual counterpart of the J-integral, can be obtained by an equilibrium finite element method. To verify the theorems and avoid the difficulty of designing equilibrium finite element models, the popular Pian-Sumihara hybrid stress model is modified by incorporating a penalty-equilibrium constraint. Moreover, an incremental formulation of the I*-integral for nonlinear finite element computation is developed. Numerical examples on different crack and loading configurations are presented. All the results indicate the validity of the theorems. © 1999 Elsevier Science Ltd. All rights reserved.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationEngineering Fracture Mechanics, 1999, v. 62 n. 2-3, p. 185-201 [How to Cite?]
 
dc.identifier.epage201
 
dc.identifier.hkuros41156
 
dc.identifier.issn0013-7944
2012 Impact Factor: 1.413
2012 SCImago Journal Rankings: 1.251
 
dc.identifier.issue2-3
 
dc.identifier.scopuseid_2-s2.0-0032652338
 
dc.identifier.spage185
 
dc.identifier.urihttp://hdl.handle.net/10722/156502
 
dc.identifier.volume62
 
dc.languageeng
 
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/engfracmech
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofEngineering Fracture Mechanics
 
dc.relation.referencesReferences in Scopus
 
dc.subjectBound Theorems
 
dc.subjectFinite Element Method
 
dc.subjectI*-Integral
 
dc.subjectJ-Integral
 
dc.subjectNonlinear Fracture
 
dc.titleUpper and lower bounds for evaluation of nonlinear fracture parameters
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Sze, KY</contributor.author>
<contributor.author>Wu, CC</contributor.author>
<contributor.author>Huang, YQ</contributor.author>
<date.accessioned>2012-08-08T08:42:42Z</date.accessioned>
<date.available>2012-08-08T08:42:42Z</date.available>
<date.issued>1999</date.issued>
<identifier.citation>Engineering Fracture Mechanics, 1999, v. 62 n. 2-3, p. 185-201</identifier.citation>
<identifier.issn>0013-7944</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/156502</identifier.uri>
<description.abstract>Bound theorems for estimating small strain nonlinear fracture parameters are proposed. It is found that the lower bound for the J-integral can be obtained by a compatible displacement finite element method. On the other hand, the upper bound of the I*-integral, which is the dual counterpart of the J-integral, can be obtained by an equilibrium finite element method. To verify the theorems and avoid the difficulty of designing equilibrium finite element models, the popular Pian-Sumihara hybrid stress model is modified by incorporating a penalty-equilibrium constraint. Moreover, an incremental formulation of the I*-integral for nonlinear finite element computation is developed. Numerical examples on different crack and loading configurations are presented. All the results indicate the validity of the theorems. &#169; 1999 Elsevier Science Ltd. All rights reserved.</description.abstract>
<language>eng</language>
<publisher>Pergamon. The Journal&apos;s web site is located at http://www.elsevier.com/locate/engfracmech</publisher>
<relation.ispartof>Engineering Fracture Mechanics</relation.ispartof>
<subject>Bound Theorems</subject>
<subject>Finite Element Method</subject>
<subject>I*-Integral</subject>
<subject>J-Integral</subject>
<subject>Nonlinear Fracture</subject>
<title>Upper and lower bounds for evaluation of nonlinear fracture parameters</title>
<type>Article</type>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.scopus>eid_2-s2.0-0032652338</identifier.scopus>
<identifier.hkuros>41156</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-0032652338&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>62</identifier.volume>
<identifier.issue>2-3</identifier.issue>
<identifier.spage>185</identifier.spage>
<identifier.epage>201</identifier.epage>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. University of Science and Technology of China