File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Pole assignment with minimum eigenvalue differential sensitivity

TitlePole assignment with minimum eigenvalue differential sensitivity
Authors
KeywordsEigenvalue Sensitivity
Gradient Flow
Pole Assignment
Robustness
Issue Date1997
PublisherProfessional Engineering Publishing Ltd. The Journal's web site is located at http://journals.pepublishing.com/link.asp?id=119778
Citation
Proceedings Of The Institution Of Mechanical Engineers. Part I: Journal Of Systems And Control Engineering, 1997, v. 211 n. 1, p. 63-74 How to Cite?
AbstractThis paper introduces a set of mathematical formulae for calculating the eigenvalue differential sensitivities of the closed-loop state matrix with respect to the open-loop state matrix, input matrix and state feedback matrix. It provides a computational procedure for a robust pole assignment problem. The algorithm is based on a gradient flow minimization of a differentiable objective function which measures the sensitivity for all closed-loop poles. Two numerical examples are employed to illustrate the technique. Comparisons to other existing methods are made as well. © IMechE 1997.
Persistent Identifierhttp://hdl.handle.net/10722/156450
ISSN
2015 Impact Factor: 0.889
2015 SCImago Journal Rankings: 0.434
References

 

DC FieldValueLanguage
dc.contributor.authorLam, Jen_US
dc.contributor.authorTam, HKen_US
dc.date.accessioned2012-08-08T08:42:29Z-
dc.date.available2012-08-08T08:42:29Z-
dc.date.issued1997en_US
dc.identifier.citationProceedings Of The Institution Of Mechanical Engineers. Part I: Journal Of Systems And Control Engineering, 1997, v. 211 n. 1, p. 63-74en_US
dc.identifier.issn0959-6518en_US
dc.identifier.urihttp://hdl.handle.net/10722/156450-
dc.description.abstractThis paper introduces a set of mathematical formulae for calculating the eigenvalue differential sensitivities of the closed-loop state matrix with respect to the open-loop state matrix, input matrix and state feedback matrix. It provides a computational procedure for a robust pole assignment problem. The algorithm is based on a gradient flow minimization of a differentiable objective function which measures the sensitivity for all closed-loop poles. Two numerical examples are employed to illustrate the technique. Comparisons to other existing methods are made as well. © IMechE 1997.en_US
dc.languageengen_US
dc.publisherProfessional Engineering Publishing Ltd. The Journal's web site is located at http://journals.pepublishing.com/link.asp?id=119778en_US
dc.relation.ispartofProceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineeringen_US
dc.subjectEigenvalue Sensitivityen_US
dc.subjectGradient Flowen_US
dc.subjectPole Assignmenten_US
dc.subjectRobustnessen_US
dc.titlePole assignment with minimum eigenvalue differential sensitivityen_US
dc.typeArticleen_US
dc.identifier.emailLam, J:james.lam@hku.hken_US
dc.identifier.authorityLam, J=rp00133en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0030704358en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0030704358&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume211en_US
dc.identifier.issue1en_US
dc.identifier.spage63en_US
dc.identifier.epage74en_US
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridLam, J=7201973414en_US
dc.identifier.scopusauthoridTam, HK=7101835047en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats