File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: 'Solitoff ' Solutions of Nonlinear Evolution Equations

Title'Solitoff ' Solutions of Nonlinear Evolution Equations
Authors
Keywords(2+1) Dimensional Evolution Equations
Bilinear Operator
Solitons
Issue Date1996
PublisherInstitute of Pure and Applied Physics. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htm
Citation
Journal Of The Physical Society Of Japan, 1996, v. 65 n. 7, p. 1971-1976 How to Cite?
AbstractDromions are exact, localized solutions of (2+1) dimensional evolution equations and decay exponentially in all directions. 'Solitoffs' of the Davey-Stewartson equations constitute an intermediate state between dromions and plane solitons, since they decay exponentially in all directions except a preferred one. Here solitoffs are rederived by the Hirota bilinear operator and extended to a variety of nonlinear evolution equations.
Persistent Identifierhttp://hdl.handle.net/10722/156448
ISSN
2015 Impact Factor: 1.559
2015 SCImago Journal Rankings: 0.720
References

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_US
dc.date.accessioned2012-08-08T08:42:28Z-
dc.date.available2012-08-08T08:42:28Z-
dc.date.issued1996en_US
dc.identifier.citationJournal Of The Physical Society Of Japan, 1996, v. 65 n. 7, p. 1971-1976en_US
dc.identifier.issn0031-9015en_US
dc.identifier.urihttp://hdl.handle.net/10722/156448-
dc.description.abstractDromions are exact, localized solutions of (2+1) dimensional evolution equations and decay exponentially in all directions. 'Solitoffs' of the Davey-Stewartson equations constitute an intermediate state between dromions and plane solitons, since they decay exponentially in all directions except a preferred one. Here solitoffs are rederived by the Hirota bilinear operator and extended to a variety of nonlinear evolution equations.en_US
dc.languageengen_US
dc.publisherInstitute of Pure and Applied Physics. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htmen_US
dc.relation.ispartofJournal of the Physical Society of Japanen_US
dc.subject(2+1) Dimensional Evolution Equationsen_US
dc.subjectBilinear Operatoren_US
dc.subjectSolitonsen_US
dc.title'Solitoff ' Solutions of Nonlinear Evolution Equationsen_US
dc.typeArticleen_US
dc.identifier.emailChow, KW:kwchow@hku.hken_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0030503554en_US
dc.identifier.hkuros26416-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0030503554&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume65en_US
dc.identifier.issue7en_US
dc.identifier.spage1971en_US
dc.identifier.epage1976en_US
dc.publisher.placeJapanen_US
dc.identifier.scopusauthoridChow, KW=13605209900en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats