File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Exponential decay rate for a Timoshenko beam with boundary damping

TitleExponential decay rate for a Timoshenko beam with boundary damping
Authors
KeywordsBoundary Damping
Exponential Stability
Rate Of Exponential Decay
Riesz System
Timoshenko Beam Equation
Issue Date2004
PublisherSpringer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0022-3239
Citation
Journal Of Optimization Theory And Applications, 2004, v. 123 n. 3, p. 669-693 How to Cite?
AbstractThe exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.
Persistent Identifierhttp://hdl.handle.net/10722/156289
ISSN
2023 Impact Factor: 1.6
2023 SCImago Journal Rankings: 0.864
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorXu, GQen_US
dc.contributor.authorYung, SPen_US
dc.date.accessioned2012-08-08T08:41:12Z-
dc.date.available2012-08-08T08:41:12Z-
dc.date.issued2004en_US
dc.identifier.citationJournal Of Optimization Theory And Applications, 2004, v. 123 n. 3, p. 669-693en_US
dc.identifier.issn0022-3239en_US
dc.identifier.urihttp://hdl.handle.net/10722/156289-
dc.description.abstractThe exponential decay rate of a Timoshenko beam system with boundary damping is studied. By asymptotically analyzing the characteristic determinant of the system, we prove that the Timoshenko beam system is a Riesz system; hence, its decay rate is determined via its spectrum. As a consequence, by showing that the imaginary axis neither has an eigenvalue on it nor is an asymptote of the spectrum, we conclude that the system is exponentially stable.en_US
dc.languageengen_US
dc.publisherSpringer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0022-3239en_US
dc.relation.ispartofJournal of Optimization Theory and Applicationsen_US
dc.subjectBoundary Dampingen_US
dc.subjectExponential Stabilityen_US
dc.subjectRate Of Exponential Decayen_US
dc.subjectRiesz Systemen_US
dc.subjectTimoshenko Beam Equationen_US
dc.titleExponential decay rate for a Timoshenko beam with boundary dampingen_US
dc.typeArticleen_US
dc.identifier.emailYung, SP:spyung@hkucc.hku.hken_US
dc.identifier.authorityYung, SP=rp00838en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/s10957-004-5728-xen_US
dc.identifier.scopuseid_2-s2.0-8644278938en_US
dc.identifier.hkuros98091-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-8644278938&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume123en_US
dc.identifier.issue3en_US
dc.identifier.spage669en_US
dc.identifier.epage693en_US
dc.identifier.isiWOS:000224912800011-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridXu, GQ=7404263948en_US
dc.identifier.scopusauthoridYung, SP=7006540951en_US
dc.identifier.citeulike31049-
dc.identifier.issnl0022-3239-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats