File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Bundle gerbes and moduli spaces

TitleBundle gerbes and moduli spaces
Authors
KeywordsCaloron bundle gerbe
Index bundle gerbe
Moduli spaces
Issue Date2012
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/geomphys
Citation
Journal of Geometry and Physics, 2012, v. 62 n. 1, p. 1-10 How to Cite?
AbstractIn this paper, we construct the index bundle gerbe of a family of self-adjoint Dirac-type operators, refining a construction of Segal. In a special case, we construct a geometric bundle gerbe called the caloron bundle gerbe, which comes with a natural connection and curving, and show that it is isomorphic to the analytically constructed index bundle gerbe. We apply these constructions to certain moduli spaces associated to compact Riemann surfaces, constructing on these moduli spaces, natural bundle gerbes with connection and curving, whose 3-curvature represent Dixmier-Douady classes that are generators of the third de Rham cohomology groups of these moduli spaces. © 2011 Elsevier B.V.
Persistent Identifierhttp://hdl.handle.net/10722/156273
ISSN
2015 Impact Factor: 0.752
2015 SCImago Journal Rankings: 0.705
ISI Accession Number ID
Funding AgencyGrant Number
Australian Research CouncilDP0878184
DP0770927
Hong Kong Research Grants CouncilHKU705407P
Funding Information:

This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP0878184). V.M. is the recipient of an Australian Research Council Australian Professorial Fellowship (project number DP0770927). S.W. is supported in part by a General Research Fund from the Hong Kong Research Grants Council (project number HKU705407P).

References

 

DC FieldValueLanguage
dc.contributor.authorBouwknegt, Pen_US
dc.contributor.authorMathai, Ven_US
dc.contributor.authorWu, Sen_US
dc.date.accessioned2012-08-08T08:41:07Z-
dc.date.available2012-08-08T08:41:07Z-
dc.date.issued2012en_US
dc.identifier.citationJournal of Geometry and Physics, 2012, v. 62 n. 1, p. 1-10en_US
dc.identifier.issn0393-0440en_US
dc.identifier.urihttp://hdl.handle.net/10722/156273-
dc.description.abstractIn this paper, we construct the index bundle gerbe of a family of self-adjoint Dirac-type operators, refining a construction of Segal. In a special case, we construct a geometric bundle gerbe called the caloron bundle gerbe, which comes with a natural connection and curving, and show that it is isomorphic to the analytically constructed index bundle gerbe. We apply these constructions to certain moduli spaces associated to compact Riemann surfaces, constructing on these moduli spaces, natural bundle gerbes with connection and curving, whose 3-curvature represent Dixmier-Douady classes that are generators of the third de Rham cohomology groups of these moduli spaces. © 2011 Elsevier B.V.en_US
dc.languageengen_US
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/geomphysen_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectCaloron bundle gerbeen_US
dc.subjectIndex bundle gerbeen_US
dc.subjectModuli spacesen_US
dc.titleBundle gerbes and moduli spacesen_US
dc.typeArticleen_US
dc.identifier.emailBouwknegt, P: peter.bouwknegt@anu.edu.auen_US
dc.identifier.emailMathai, V: mathai.varghese@adelaide.edu.au-
dc.identifier.emailWu, S: swu@maths.hku.hk-
dc.identifier.authorityWu, S=rp00814en_US
dc.description.naturepostprinten_US
dc.identifier.doi10.1016/j.geomphys.2011.08.005en_US
dc.identifier.scopuseid_2-s2.0-80053440533en_US
dc.identifier.hkuros212045-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-80053440533&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume62en_US
dc.identifier.issue1en_US
dc.identifier.spage1en_US
dc.identifier.epage10en_US
dc.identifier.isiWOS:000298524500001-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridWu, S=15830510400en_US
dc.identifier.scopusauthoridMathai, V=35563226300en_US
dc.identifier.scopusauthoridBouwknegt, P=6701762836en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats