File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jnt.2011.05.014
- Scopus: eid_2-s2.0-79961119751
- WOS: WOS:000294983900002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Quantitative version of the joint distribution of eigenvalues of the Hecke operators
Title | Quantitative version of the joint distribution of eigenvalues of the Hecke operators | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Keywords | Hecke eigenvalues Joint distribution Primitive maass form Quantitative version | ||||||
Issue Date | 2011 | ||||||
Publisher | Academic Press. The Journal's web site is located at http://www.elsevier.com/locate/jnt | ||||||
Citation | Journal of Number Theory, 2011, v. 131 n. 12, p. 2252-2281 How to Cite? | ||||||
Abstract | Recently, Murty and Sinha proved an effective/quantitative version of Serre's equidistribution theorem for eigenvalues of Hecke operators on the space of primitive holomorphic cusp forms. In the context of primitive Maass forms, Sarnak figured out an analogous joint distribution. In this paper, we prove a quantitative version of Sarnak's theorem that gives explicitly estimate on the rate of convergence. The same result also holds for the case of holomorphic cusp forms. © 2011 Elsevier Inc. | ||||||
Persistent Identifier | http://hdl.handle.net/10722/156269 | ||||||
ISSN | 2023 Impact Factor: 0.6 2023 SCImago Journal Rankings: 0.780 | ||||||
ISI Accession Number ID |
Funding Information: The authors wish to thank the referee and Dr. Jie Wu for their helpful comments. This work is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU702308P), and the GRF incentive award of The University of Hong Kong (10209047). | ||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lau, YK | en_US |
dc.contributor.author | Wang, Y | en_US |
dc.date.accessioned | 2012-08-08T08:41:06Z | - |
dc.date.available | 2012-08-08T08:41:06Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.citation | Journal of Number Theory, 2011, v. 131 n. 12, p. 2252-2281 | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156269 | - |
dc.description.abstract | Recently, Murty and Sinha proved an effective/quantitative version of Serre's equidistribution theorem for eigenvalues of Hecke operators on the space of primitive holomorphic cusp forms. In the context of primitive Maass forms, Sarnak figured out an analogous joint distribution. In this paper, we prove a quantitative version of Sarnak's theorem that gives explicitly estimate on the rate of convergence. The same result also holds for the case of holomorphic cusp forms. © 2011 Elsevier Inc. | en_US |
dc.language | eng | en_US |
dc.publisher | Academic Press. The Journal's web site is located at http://www.elsevier.com/locate/jnt | en_US |
dc.relation.ispartof | Journal of Number Theory | en_US |
dc.subject | Hecke eigenvalues | en_US |
dc.subject | Joint distribution | en_US |
dc.subject | Primitive maass form | en_US |
dc.subject | Quantitative version | en_US |
dc.title | Quantitative version of the joint distribution of eigenvalues of the Hecke operators | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lau, YK: yklau@maths.hku.hk | en_US |
dc.identifier.email | Wang, Y: ynwang@hku.hk | - |
dc.identifier.authority | Lau, YK=rp00722 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.jnt.2011.05.014 | en_US |
dc.identifier.scopus | eid_2-s2.0-79961119751 | en_US |
dc.identifier.hkuros | 201787 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-79961119751&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 131 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.spage | 2252 | en_US |
dc.identifier.epage | 2281 | en_US |
dc.identifier.eissn | 1096-1658 | - |
dc.identifier.isi | WOS:000294983900002 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Wang, Y=45661915000 | en_US |
dc.identifier.scopusauthorid | Lau, YK=35724053400 | en_US |
dc.identifier.citeulike | 9630506 | - |
dc.identifier.issnl | 0022-314X | - |