File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Approximate inverse-free preconditioners for Toeplitz matrices

TitleApproximate inverse-free preconditioners for Toeplitz matrices
Authors
KeywordsApproximate Inverse-Free Preconditioners
Gohberg-Semencul Formula
Preconditioned Conjugate Gradient Method
Toeplitz Matrices
Issue Date2011
PublisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amc
Citation
Applied Mathematics And Computation, 2011, v. 217 n. 16, p. 6856-6867 How to Cite?
AbstractIn this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Semencul formula. We show that if a Toeplitz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experimental results show that the proposed preconditioners are superior to other existing preconditioners in the literature. © 2011 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156266
ISSN
2015 Impact Factor: 1.345
2015 SCImago Journal Rankings: 1.008
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWen, YWen_US
dc.contributor.authorChing, WKen_US
dc.contributor.authorNg, Men_US
dc.date.accessioned2012-08-08T08:41:06Z-
dc.date.available2012-08-08T08:41:06Z-
dc.date.issued2011en_US
dc.identifier.citationApplied Mathematics And Computation, 2011, v. 217 n. 16, p. 6856-6867en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://hdl.handle.net/10722/156266-
dc.description.abstractIn this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Semencul formula. We show that if a Toeplitz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experimental results show that the proposed preconditioners are superior to other existing preconditioners in the literature. © 2011 Elsevier Inc. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amcen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subjectApproximate Inverse-Free Preconditionersen_US
dc.subjectGohberg-Semencul Formulaen_US
dc.subjectPreconditioned Conjugate Gradient Methoden_US
dc.subjectToeplitz Matricesen_US
dc.titleApproximate inverse-free preconditioners for Toeplitz matricesen_US
dc.typeArticleen_US
dc.identifier.emailChing, WK:wching@hku.hken_US
dc.identifier.authorityChing, WK=rp00679en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.amc.2011.01.030en_US
dc.identifier.scopuseid_2-s2.0-79952448880en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-79952448880&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume217en_US
dc.identifier.issue16en_US
dc.identifier.spage6856en_US
dc.identifier.epage6867en_US
dc.identifier.isiWOS:000288064600008-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridWen, YW=7401777008en_US
dc.identifier.scopusauthoridChing, WK=13310265500en_US
dc.identifier.scopusauthoridNg, M=34571761900en_US
dc.identifier.citeulike8752182-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats