File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.amc.2011.01.030
- Scopus: eid_2-s2.0-79952448880
- WOS: WOS:000288064600008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Approximate inverse-free preconditioners for Toeplitz matrices
Title | Approximate inverse-free preconditioners for Toeplitz matrices |
---|---|
Authors | |
Keywords | Approximate Inverse-Free Preconditioners Gohberg-Semencul Formula Preconditioned Conjugate Gradient Method Toeplitz Matrices |
Issue Date | 2011 |
Publisher | Elsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amc |
Citation | Applied Mathematics And Computation, 2011, v. 217 n. 16, p. 6856-6867 How to Cite? |
Abstract | In this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Semencul formula. We show that if a Toeplitz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experimental results show that the proposed preconditioners are superior to other existing preconditioners in the literature. © 2011 Elsevier Inc. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/156266 |
ISSN | 2023 Impact Factor: 3.5 2023 SCImago Journal Rankings: 1.026 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wen, YW | en_US |
dc.contributor.author | Ching, WK | en_US |
dc.contributor.author | Ng, M | en_US |
dc.date.accessioned | 2012-08-08T08:41:06Z | - |
dc.date.available | 2012-08-08T08:41:06Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.citation | Applied Mathematics And Computation, 2011, v. 217 n. 16, p. 6856-6867 | en_US |
dc.identifier.issn | 0096-3003 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156266 | - |
dc.description.abstract | In this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Semencul formula. We show that if a Toeplitz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experimental results show that the proposed preconditioners are superior to other existing preconditioners in the literature. © 2011 Elsevier Inc. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amc | en_US |
dc.relation.ispartof | Applied Mathematics and Computation | en_US |
dc.subject | Approximate Inverse-Free Preconditioners | en_US |
dc.subject | Gohberg-Semencul Formula | en_US |
dc.subject | Preconditioned Conjugate Gradient Method | en_US |
dc.subject | Toeplitz Matrices | en_US |
dc.title | Approximate inverse-free preconditioners for Toeplitz matrices | en_US |
dc.type | Article | en_US |
dc.identifier.email | Ching, WK:wching@hku.hk | en_US |
dc.identifier.authority | Ching, WK=rp00679 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.amc.2011.01.030 | en_US |
dc.identifier.scopus | eid_2-s2.0-79952448880 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-79952448880&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 217 | en_US |
dc.identifier.issue | 16 | en_US |
dc.identifier.spage | 6856 | en_US |
dc.identifier.epage | 6867 | en_US |
dc.identifier.isi | WOS:000288064600008 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Wen, YW=7401777008 | en_US |
dc.identifier.scopusauthorid | Ching, WK=13310265500 | en_US |
dc.identifier.scopusauthorid | Ng, M=34571761900 | en_US |
dc.identifier.citeulike | 8752182 | - |
dc.identifier.issnl | 0096-3003 | - |