File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1017/S030500411000040X
- Scopus: eid_2-s2.0-79451472370
- WOS: WOS:000283812700002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On modular signs
Title | On modular signs | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Issue Date | 2010 | ||||||
Publisher | Cambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=PSP | ||||||
Citation | Mathematical Proceedings Of The Cambridge Philosophical Society, 2010, v. 149 n. 3, p. 389-411 How to Cite? | ||||||
Abstract | We consider some questions related to the signs of Hecke eigenvalues or Fourier coefficients of classical modular forms. One problem is to determine to what extent those signs, for suitable sets of primes, determine uniquely the modular form, and we give both individual and statistical results. The second problem, which has been considered by a number of authors, is to determine the size, in terms of the conductor and weight, of the first sign-change of Hecke eigenvalues. Here we improve the recent estimate of Iwaniec, Kohnen and Sengupta. © Cambridge Philosophical Society 2010. | ||||||
Persistent Identifier | http://hdl.handle.net/10722/156262 | ||||||
ISSN | 2023 Impact Factor: 0.6 2023 SCImago Journal Rankings: 0.929 | ||||||
ISI Accession Number ID |
Funding Information: Supported in part by the National Science Foundation under agreement No. DMS-0635607 during a sabbatical stay at the Institute for Advanced Study. | ||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kowalski, E | en_US |
dc.contributor.author | Lau, YK | en_US |
dc.contributor.author | Soundararajan, K | en_US |
dc.contributor.author | Wu, J | en_US |
dc.date.accessioned | 2012-08-08T08:41:05Z | - |
dc.date.available | 2012-08-08T08:41:05Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.citation | Mathematical Proceedings Of The Cambridge Philosophical Society, 2010, v. 149 n. 3, p. 389-411 | en_US |
dc.identifier.issn | 0305-0041 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156262 | - |
dc.description.abstract | We consider some questions related to the signs of Hecke eigenvalues or Fourier coefficients of classical modular forms. One problem is to determine to what extent those signs, for suitable sets of primes, determine uniquely the modular form, and we give both individual and statistical results. The second problem, which has been considered by a number of authors, is to determine the size, in terms of the conductor and weight, of the first sign-change of Hecke eigenvalues. Here we improve the recent estimate of Iwaniec, Kohnen and Sengupta. © Cambridge Philosophical Society 2010. | en_US |
dc.language | eng | en_US |
dc.publisher | Cambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=PSP | en_US |
dc.relation.ispartof | Mathematical Proceedings of the Cambridge Philosophical Society | en_US |
dc.title | On modular signs | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lau, YK:yklau@maths.hku.hk | en_US |
dc.identifier.authority | Lau, YK=rp00722 | en_US |
dc.description.nature | published_or_final_version | en_US |
dc.identifier.doi | 10.1017/S030500411000040X | en_US |
dc.identifier.scopus | eid_2-s2.0-79451472370 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-79451472370&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 149 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.spage | 389 | en_US |
dc.identifier.epage | 411 | en_US |
dc.identifier.eissn | 1469-8064 | - |
dc.identifier.isi | WOS:000283812700002 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Kowalski, E=7006982123 | en_US |
dc.identifier.scopusauthorid | Lau, YK=35724053400 | en_US |
dc.identifier.scopusauthorid | Soundararajan, K=7004136847 | en_US |
dc.identifier.scopusauthorid | Wu, J=36248039200 | en_US |
dc.identifier.issnl | 0305-0041 | - |