File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Twisted analytic torsion

TitleTwisted analytic torsion
Authors
KeywordsAnalytic Torsion
Circle Bundles
T-Duality
Issue Date2010
PublisherScience China Press, co-published with Springer. The Journal's web site is located at http://math.scichina.com/english/
Citation
Science China Mathematics, 2010, v. 53 n. 3, p. 555-563 How to Cite?
AbstractWe review the Reidemeister, Ray-Singer's analytic torsion and the Cheeger-Müller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension. © Science China Press and Springer-Verlag Berlin Heidelberg 2010.
Persistent Identifierhttp://hdl.handle.net/10722/156255
ISSN
2015 Impact Factor: 0.761
2015 SCImago Journal Rankings: 0.894
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorMathai, Ven_US
dc.contributor.authorWu, SYen_US
dc.date.accessioned2012-08-08T08:41:02Z-
dc.date.available2012-08-08T08:41:02Z-
dc.date.issued2010en_US
dc.identifier.citationScience China Mathematics, 2010, v. 53 n. 3, p. 555-563en_US
dc.identifier.issn1674-7283en_US
dc.identifier.urihttp://hdl.handle.net/10722/156255-
dc.description.abstractWe review the Reidemeister, Ray-Singer's analytic torsion and the Cheeger-Müller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension. © Science China Press and Springer-Verlag Berlin Heidelberg 2010.en_US
dc.languageengen_US
dc.publisherScience China Press, co-published with Springer. The Journal's web site is located at http://math.scichina.com/english/en_US
dc.relation.ispartofScience China Mathematicsen_US
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectAnalytic Torsionen_US
dc.subjectCircle Bundlesen_US
dc.subjectT-Dualityen_US
dc.titleTwisted analytic torsionen_US
dc.typeArticleen_US
dc.identifier.emailWu, SY:swu@maths.hku.hken_US
dc.identifier.authorityWu, SY=rp00814en_US
dc.description.naturepostprinten_US
dc.identifier.doi10.1007/s11425-010-0053-3en_US
dc.identifier.scopuseid_2-s2.0-77952178216en_US
dc.identifier.hkuros172986-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77952178216&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume53en_US
dc.identifier.issue3en_US
dc.identifier.spage555en_US
dc.identifier.epage563en_US
dc.identifier.isiWOS:000276597700005-
dc.publisher.placeChinaen_US
dc.identifier.scopusauthoridMathai, V=35563226300en_US
dc.identifier.scopusauthoridWu, SY=15830510400en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats