File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Test elements, retracts and automorphic orbits

TitleTest elements, retracts and automorphic orbits
Authors
KeywordsAutomorphic Orbit
Coordinate
Degree Estimate
Free Associative Algebra
Polynomial Algebra
Retract
Test Element
Issue Date2008
PublisherAcademic Press. The Journal's web site is located at http://www.elsevier.com/locate/jalgebra
Citation
Journal Of Algebra, 2008, v. 320 n. 7, p. 3062-3068 How to Cite?
AbstractLet A2 be a free associative or polynomial algebra of rank two over a field K of characteristic zero. Based on the degree estimate of Makar-Limanov and J.-T. Yu, we prove: (1) An element p ∈ A2 is a test element if p does not belong to any proper retract of A2; (2) Every endomorphism preserving the automorphic orbit of a nonconstant element of A2 is an automorphism. © 2008 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156230
ISSN
2015 Impact Factor: 0.66
2015 SCImago Journal Rankings: 1.165
ISI Accession Number ID
Funding AgencyGrant Number
University of Hong Kong
RGC-CERG Grant
Funding Information:

Sheng-Jun Gong was partially supported by a University of Hong Kong Postgraduate Studentship.

References

 

DC FieldValueLanguage
dc.contributor.authorGong, SJen_US
dc.contributor.authorYu, JTen_US
dc.date.accessioned2012-08-08T08:40:56Z-
dc.date.available2012-08-08T08:40:56Z-
dc.date.issued2008en_US
dc.identifier.citationJournal Of Algebra, 2008, v. 320 n. 7, p. 3062-3068en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://hdl.handle.net/10722/156230-
dc.description.abstractLet A2 be a free associative or polynomial algebra of rank two over a field K of characteristic zero. Based on the degree estimate of Makar-Limanov and J.-T. Yu, we prove: (1) An element p ∈ A2 is a test element if p does not belong to any proper retract of A2; (2) Every endomorphism preserving the automorphic orbit of a nonconstant element of A2 is an automorphism. © 2008 Elsevier Inc. All rights reserved.en_US
dc.languageengen_US
dc.publisherAcademic Press. The Journal's web site is located at http://www.elsevier.com/locate/jalgebraen_US
dc.relation.ispartofJournal of Algebraen_US
dc.subjectAutomorphic Orbiten_US
dc.subjectCoordinateen_US
dc.subjectDegree Estimateen_US
dc.subjectFree Associative Algebraen_US
dc.subjectPolynomial Algebraen_US
dc.subjectRetracten_US
dc.subjectTest Elementen_US
dc.titleTest elements, retracts and automorphic orbitsen_US
dc.typeArticleen_US
dc.identifier.emailYu, JT:yujt@hku.hken_US
dc.identifier.authorityYu, JT=rp00834en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.jalgebra.2008.07.012en_US
dc.identifier.scopuseid_2-s2.0-49549090860en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-49549090860&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume320en_US
dc.identifier.issue7en_US
dc.identifier.spage3062en_US
dc.identifier.epage3068en_US
dc.identifier.eissn1090-266X-
dc.identifier.isiWOS:000259099400019-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridGong, SJ=24402859500en_US
dc.identifier.scopusauthoridYu, JT=7405530208en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats