File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1080/00927870701864163
- Scopus: eid_2-s2.0-45949103369
- WOS: WOS:000255250900010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: The linear coordinate preserving problem
Title | The linear coordinate preserving problem |
---|---|
Authors | |
Keywords | Automorphism Coordinate Preserving Problem Endomorphism Finite Fields Jacobian Conjecture Linear Coordinate Preserving Problem Permutation Polynomial Positive Characteristic |
Issue Date | 2008 |
Publisher | Taylor & Francis Inc. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/00927872.asp |
Citation | Communications In Algebra, 2008, v. 36 n. 4, p. 1354-1364 How to Cite? |
Abstract | We prove that every K-endomorphism of a rank 2 polynomial algebra over an algebraically closed field K of positive characteristic taking all linear coordinates to coordinates is an automorphism. We give a new characterization of coordinates of K[t][x, y], where K is an algebraically closed field of any characteristic. We also explore the close connection between coordinates and permutation polynomials of finite fields. Copyright © Taylor & Francis Group, LLC. |
Persistent Identifier | http://hdl.handle.net/10722/156223 |
ISSN | 2023 Impact Factor: 0.6 2023 SCImago Journal Rankings: 0.619 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gong, SJ | en_US |
dc.contributor.author | Yu, JT | en_US |
dc.date.accessioned | 2012-08-08T08:40:54Z | - |
dc.date.available | 2012-08-08T08:40:54Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | Communications In Algebra, 2008, v. 36 n. 4, p. 1354-1364 | en_US |
dc.identifier.issn | 0092-7872 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156223 | - |
dc.description.abstract | We prove that every K-endomorphism of a rank 2 polynomial algebra over an algebraically closed field K of positive characteristic taking all linear coordinates to coordinates is an automorphism. We give a new characterization of coordinates of K[t][x, y], where K is an algebraically closed field of any characteristic. We also explore the close connection between coordinates and permutation polynomials of finite fields. Copyright © Taylor & Francis Group, LLC. | en_US |
dc.language | eng | en_US |
dc.publisher | Taylor & Francis Inc. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/00927872.asp | en_US |
dc.relation.ispartof | Communications in Algebra | en_US |
dc.subject | Automorphism | en_US |
dc.subject | Coordinate Preserving Problem | en_US |
dc.subject | Endomorphism | en_US |
dc.subject | Finite Fields | en_US |
dc.subject | Jacobian Conjecture | en_US |
dc.subject | Linear Coordinate Preserving Problem | en_US |
dc.subject | Permutation Polynomial | en_US |
dc.subject | Positive Characteristic | en_US |
dc.title | The linear coordinate preserving problem | en_US |
dc.type | Article | en_US |
dc.identifier.email | Yu, JT:yujt@hku.hk | en_US |
dc.identifier.authority | Yu, JT=rp00834 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1080/00927870701864163 | en_US |
dc.identifier.scopus | eid_2-s2.0-45949103369 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-45949103369&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 36 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.spage | 1354 | en_US |
dc.identifier.epage | 1364 | en_US |
dc.identifier.isi | WOS:000255250900010 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Gong, SJ=24402859500 | en_US |
dc.identifier.scopusauthorid | Yu, JT=7405530208 | en_US |
dc.identifier.issnl | 0092-7872 | - |