##### Supplementary
• Appears in Collections:

#### Article: On the zeros of ∑ aiexpgi

Title On the zeros of ∑ aiexpgi Ng, TWYang, CC Borel TheoremEntire FunctionNevanlinna TheoryUpper Half-PlaneZero Set 1997 Proceedings Of The Japan Academy Series A: Mathematical Sciences, 1997, v. 73 n. 7, p. 137-139 How to Cite? We consider entire functions of the form f = ∑ aiegi, where ai(≢ 0), gi are entire functions and the orders of all ai are less than one. If all the zeros of f are real, then f = eg ∑aiehi, where hi, are linear functions. Using this result, we can prove that f = a1eg if all zeros of f are positive, which also generalizes a result obtained by A. Eremenko and L. A. Rubel. http://hdl.handle.net/10722/156196 0386-21942015 Impact Factor: 0.2862015 SCImago Journal Rankings: 0.393 References in Scopus

DC FieldValueLanguage
dc.contributor.authorNg, TWen_US
dc.contributor.authorYang, CCen_US
dc.date.accessioned2012-08-08T08:40:48Z-
dc.date.available2012-08-08T08:40:48Z-
dc.date.issued1997en_US
dc.identifier.citationProceedings Of The Japan Academy Series A: Mathematical Sciences, 1997, v. 73 n. 7, p. 137-139en_US
dc.identifier.issn0386-2194en_US
dc.identifier.urihttp://hdl.handle.net/10722/156196-
dc.description.abstractWe consider entire functions of the form f = ∑ aiegi, where ai(≢ 0), gi are entire functions and the orders of all ai are less than one. If all the zeros of f are real, then f = eg ∑aiehi, where hi, are linear functions. Using this result, we can prove that f = a1eg if all zeros of f are positive, which also generalizes a result obtained by A. Eremenko and L. A. Rubel.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of the Japan Academy Series A: Mathematical Sciencesen_US
dc.subjectBorel Theoremen_US
dc.subjectEntire Functionen_US
dc.subjectNevanlinna Theoryen_US
dc.subjectUpper Half-Planeen_US
dc.subjectZero Seten_US
dc.titleOn the zeros of ∑ aiexpgien_US
dc.typeArticleen_US
dc.identifier.emailNg, TW:ntw@maths.hku.hken_US
dc.identifier.authorityNg, TW=rp00768en_US
dc.identifier.scopuseid_2-s2.0-35248895439en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-35248895439&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume73en_US
dc.identifier.issue7en_US
dc.identifier.spage137en_US
dc.identifier.epage139en_US
dc.identifier.scopusauthoridNg, TW=7402229732en_US
dc.identifier.scopusauthoridYang, CC=7407739661en_US