File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1080/10652460701318418
- Scopus: eid_2-s2.0-34249093693
- WOS: WOS:000246744500006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Logarithmically completely monotonic functions concerning gamma and digamma functions
Title | Logarithmically completely monotonic functions concerning gamma and digamma functions |
---|---|
Authors | |
Keywords | Completely Monotonic Function Gamma Function Logarithmically Completely Monotonic Function Polygamma Function |
Issue Date | 2007 |
Publisher | Taylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/10652469.asp |
Citation | Integral Transforms And Special Functions, 2007, v. 18 n. 6, p. 435-443 How to Cite? |
Abstract | For given real numbers a0, b and c, let Fa, b, c(x)=[(x+1)]1/x(1+a/x)x+b/xc and a, b, c(x)=''(x)+[2+(b+c)x-2x2]/x3+[3a(2a-b)+(6a-b)x+2x2]/(x+a)3 with x(0, ), where (x) and (x) are the well-known Euler gamma function and the psi or digamma function, respectively. In this article, it is revealed that the function Fa, b, c(x) for 2a3b-3c and its reciprocal 1/Fa, b, c(x) for 2a3b and 1+2b+c0 are logarithmically completely monotonic in (0, ), while the function a, b, c(x) for 02a3b and 1+2b+c0 and its negative-a, b, c(x) for 02a3b and b+c0 are completely monotonic in (0, ). |
Persistent Identifier | http://hdl.handle.net/10722/156187 |
ISSN | 2023 Impact Factor: 0.7 2023 SCImago Journal Rankings: 0.597 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qi, F | en_US |
dc.contributor.author | Chen, SX | en_US |
dc.contributor.author | Cheung, WS | en_US |
dc.date.accessioned | 2012-08-08T08:40:46Z | - |
dc.date.available | 2012-08-08T08:40:46Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.citation | Integral Transforms And Special Functions, 2007, v. 18 n. 6, p. 435-443 | en_US |
dc.identifier.issn | 1065-2469 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156187 | - |
dc.description.abstract | For given real numbers a0, b and c, let Fa, b, c(x)=[(x+1)]1/x(1+a/x)x+b/xc and a, b, c(x)=''(x)+[2+(b+c)x-2x2]/x3+[3a(2a-b)+(6a-b)x+2x2]/(x+a)3 with x(0, ), where (x) and (x) are the well-known Euler gamma function and the psi or digamma function, respectively. In this article, it is revealed that the function Fa, b, c(x) for 2a3b-3c and its reciprocal 1/Fa, b, c(x) for 2a3b and 1+2b+c0 are logarithmically completely monotonic in (0, ), while the function a, b, c(x) for 02a3b and 1+2b+c0 and its negative-a, b, c(x) for 02a3b and b+c0 are completely monotonic in (0, ). | en_US |
dc.language | eng | en_US |
dc.publisher | Taylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/10652469.asp | en_US |
dc.relation.ispartof | Integral Transforms and Special Functions | en_US |
dc.subject | Completely Monotonic Function | en_US |
dc.subject | Gamma Function | en_US |
dc.subject | Logarithmically Completely Monotonic Function | en_US |
dc.subject | Polygamma Function | en_US |
dc.title | Logarithmically completely monotonic functions concerning gamma and digamma functions | en_US |
dc.type | Article | en_US |
dc.identifier.email | Cheung, WS:wscheung@hkucc.hku.hk | en_US |
dc.identifier.authority | Cheung, WS=rp00678 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1080/10652460701318418 | en_US |
dc.identifier.scopus | eid_2-s2.0-34249093693 | en_US |
dc.identifier.hkuros | 138758 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-34249093693&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 18 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.spage | 435 | en_US |
dc.identifier.epage | 443 | en_US |
dc.identifier.isi | WOS:000246744500006 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Qi, F=7101777278 | en_US |
dc.identifier.scopusauthorid | Chen, SX=16315270800 | en_US |
dc.identifier.scopusauthorid | Cheung, WS=7202743118 | en_US |
dc.identifier.issnl | 1065-2469 | - |