File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Logarithmically completely monotonic functions concerning gamma and digamma functions

TitleLogarithmically completely monotonic functions concerning gamma and digamma functions
Authors
KeywordsCompletely Monotonic Function
Gamma Function
Logarithmically Completely Monotonic Function
Polygamma Function
Issue Date2007
PublisherTaylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/10652469.asp
Citation
Integral Transforms And Special Functions, 2007, v. 18 n. 6, p. 435-443 How to Cite?
AbstractFor given real numbers a0, b and c, let Fa, b, c(x)=[(x+1)]1/x(1+a/x)x+b/xc and a, b, c(x)=''(x)+[2+(b+c)x-2x2]/x3+[3a(2a-b)+(6a-b)x+2x2]/(x+a)3 with x(0, ), where (x) and (x) are the well-known Euler gamma function and the psi or digamma function, respectively. In this article, it is revealed that the function Fa, b, c(x) for 2a3b-3c and its reciprocal 1/Fa, b, c(x) for 2a3b and 1+2b+c0 are logarithmically completely monotonic in (0, ), while the function a, b, c(x) for 02a3b and 1+2b+c0 and its negative-a, b, c(x) for 02a3b and b+c0 are completely monotonic in (0, ).
Persistent Identifierhttp://hdl.handle.net/10722/156187
ISSN
2015 Impact Factor: 0.528
2015 SCImago Journal Rankings: 0.659
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorQi, Fen_US
dc.contributor.authorChen, SXen_US
dc.contributor.authorCheung, WSen_US
dc.date.accessioned2012-08-08T08:40:46Z-
dc.date.available2012-08-08T08:40:46Z-
dc.date.issued2007en_US
dc.identifier.citationIntegral Transforms And Special Functions, 2007, v. 18 n. 6, p. 435-443en_US
dc.identifier.issn1065-2469en_US
dc.identifier.urihttp://hdl.handle.net/10722/156187-
dc.description.abstractFor given real numbers a0, b and c, let Fa, b, c(x)=[(x+1)]1/x(1+a/x)x+b/xc and a, b, c(x)=''(x)+[2+(b+c)x-2x2]/x3+[3a(2a-b)+(6a-b)x+2x2]/(x+a)3 with x(0, ), where (x) and (x) are the well-known Euler gamma function and the psi or digamma function, respectively. In this article, it is revealed that the function Fa, b, c(x) for 2a3b-3c and its reciprocal 1/Fa, b, c(x) for 2a3b and 1+2b+c0 are logarithmically completely monotonic in (0, ), while the function a, b, c(x) for 02a3b and 1+2b+c0 and its negative-a, b, c(x) for 02a3b and b+c0 are completely monotonic in (0, ).en_US
dc.languageengen_US
dc.publisherTaylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/10652469.aspen_US
dc.relation.ispartofIntegral Transforms and Special Functionsen_US
dc.subjectCompletely Monotonic Functionen_US
dc.subjectGamma Functionen_US
dc.subjectLogarithmically Completely Monotonic Functionen_US
dc.subjectPolygamma Functionen_US
dc.titleLogarithmically completely monotonic functions concerning gamma and digamma functionsen_US
dc.typeArticleen_US
dc.identifier.emailCheung, WS:wscheung@hkucc.hku.hken_US
dc.identifier.authorityCheung, WS=rp00678en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1080/10652460701318418en_US
dc.identifier.scopuseid_2-s2.0-34249093693en_US
dc.identifier.hkuros138758-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-34249093693&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume18en_US
dc.identifier.issue6en_US
dc.identifier.spage435en_US
dc.identifier.epage443en_US
dc.identifier.isiWOS:000246744500006-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridQi, F=7101777278en_US
dc.identifier.scopusauthoridChen, SX=16315270800en_US
dc.identifier.scopusauthoridCheung, WS=7202743118en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats