File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jpaa.2006.05.005
- Scopus: eid_2-s2.0-33751525145
- WOS: WOS:000243862300004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Equivalence of polynomials under automorphisms of K [x, y]
Title | Equivalence of polynomials under automorphisms of K [x, y] |
---|---|
Authors | |
Issue Date | 2007 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jpaa |
Citation | Journal Of Pure And Applied Algebra, 2007, v. 209 n. 1, p. 71-78 How to Cite? |
Abstract | Let K [x, y] be the algebra of polynomials in two variables over an arbitrary field K. We show that if the maximum of the x- and y-degrees of a given polynomial p (x, y) cannot be decreased by a single triangular or linear automorphism of K [x, y], then it cannot be decreased by any automorphism of K [x, y]. If K is an algebraically closed constructible field, this result yields an algorithm for deciding whether or not two polynomials p, q ∈ K [x, y] are equivalent under an automorphism of K [x, y]. We also show that if there is an automorphism of K [x, y] taking p to q, then it is "almost" unique. More precisely: if an automorphism α of K [x, y] is not conjugate to a triangular or linear automorphism, then any polynomial invariant (or even semiinvariant) under α is a constant. © 2006 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/156172 |
ISSN | 2023 Impact Factor: 0.7 2023 SCImago Journal Rankings: 0.897 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MakarLimanov, L | en_US |
dc.contributor.author | Shpilrain, V | en_US |
dc.contributor.author | Yu, JT | en_US |
dc.date.accessioned | 2012-08-08T08:40:42Z | - |
dc.date.available | 2012-08-08T08:40:42Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.citation | Journal Of Pure And Applied Algebra, 2007, v. 209 n. 1, p. 71-78 | en_US |
dc.identifier.issn | 0022-4049 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156172 | - |
dc.description.abstract | Let K [x, y] be the algebra of polynomials in two variables over an arbitrary field K. We show that if the maximum of the x- and y-degrees of a given polynomial p (x, y) cannot be decreased by a single triangular or linear automorphism of K [x, y], then it cannot be decreased by any automorphism of K [x, y]. If K is an algebraically closed constructible field, this result yields an algorithm for deciding whether or not two polynomials p, q ∈ K [x, y] are equivalent under an automorphism of K [x, y]. We also show that if there is an automorphism of K [x, y] taking p to q, then it is "almost" unique. More precisely: if an automorphism α of K [x, y] is not conjugate to a triangular or linear automorphism, then any polynomial invariant (or even semiinvariant) under α is a constant. © 2006 Elsevier Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jpaa | en_US |
dc.relation.ispartof | Journal of Pure and Applied Algebra | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Equivalence of polynomials under automorphisms of K [x, y] | en_US |
dc.type | Article | en_US |
dc.identifier.email | Yu, JT:yujt@hku.hk | en_US |
dc.identifier.authority | Yu, JT=rp00834 | en_US |
dc.description.nature | preprint | en_US |
dc.identifier.doi | 10.1016/j.jpaa.2006.05.005 | en_US |
dc.identifier.scopus | eid_2-s2.0-33751525145 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33751525145&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 209 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.spage | 71 | en_US |
dc.identifier.epage | 78 | en_US |
dc.identifier.isi | WOS:000243862300004 | - |
dc.publisher.place | Netherlands | en_US |
dc.identifier.scopusauthorid | MakarLimanov, L=6603475677 | en_US |
dc.identifier.scopusauthorid | Shpilrain, V=6603904879 | en_US |
dc.identifier.scopusauthorid | Yu, JT=7405530208 | en_US |
dc.identifier.issnl | 0022-4049 | - |