File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Iterative methods for flexible manufacturing systems

TitleIterative methods for flexible manufacturing systems
Authors
KeywordsFlexible Manufacturing System
Preconditioned Conjugate Gradient Method
Issue Date2003
PublisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amc
Citation
Applied Mathematics And Computation, 2003, v. 141 n. 2-3, p. 553-564 How to Cite?
AbstractThis paper presents an Markovian model for flexible manufacturing systems (FMSs). The model captures two important features of a FMS: the reliability of machines and the capacity of the maintenance facility. A fast numerical algorithm based on preconditioned conjugate gradient (PCG) method is developed to solve the steady state probability distribution of the system. We prove the fast convergence rate of the PCG method. The performance analysis of the FMS can be evaluated by making use of the steady state probability distribution. © 2002 Elsevier Science Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156091
ISSN
2015 Impact Factor: 1.345
2015 SCImago Journal Rankings: 1.008
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChing, WKen_US
dc.contributor.authorLoh, AWen_US
dc.date.accessioned2012-08-08T08:40:22Z-
dc.date.available2012-08-08T08:40:22Z-
dc.date.issued2003en_US
dc.identifier.citationApplied Mathematics And Computation, 2003, v. 141 n. 2-3, p. 553-564en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://hdl.handle.net/10722/156091-
dc.description.abstractThis paper presents an Markovian model for flexible manufacturing systems (FMSs). The model captures two important features of a FMS: the reliability of machines and the capacity of the maintenance facility. A fast numerical algorithm based on preconditioned conjugate gradient (PCG) method is developed to solve the steady state probability distribution of the system. We prove the fast convergence rate of the PCG method. The performance analysis of the FMS can be evaluated by making use of the steady state probability distribution. © 2002 Elsevier Science Inc. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amcen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subjectFlexible Manufacturing Systemen_US
dc.subjectPreconditioned Conjugate Gradient Methoden_US
dc.titleIterative methods for flexible manufacturing systemsen_US
dc.typeArticleen_US
dc.identifier.emailChing, WK:wching@hku.hken_US
dc.identifier.authorityChing, WK=rp00679en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/S0096-3003(02)00275-8en_US
dc.identifier.scopuseid_2-s2.0-0037420927en_US
dc.identifier.hkuros76511-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0037420927&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume141en_US
dc.identifier.issue2-3en_US
dc.identifier.spage553en_US
dc.identifier.epage564en_US
dc.identifier.isiWOS:000182486200027-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridChing, WK=13310265500en_US
dc.identifier.scopusauthoridLoh, AW=36948804500en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats