File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Linear operators preserving certain equivalence relations originating in system theory

TitleLinear operators preserving certain equivalence relations originating in system theory
Authors
Issue Date1992
PublisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/laa
Citation
Linear Algebra And Its Applications, 1992, v. 161 C, p. 165-225 How to Cite?
AbstractLet F be C or R. A finite-dimensional linear time-invariant system is described in state-space form by [xdot] = Ax + Bu, y = Cx + Du, and is identified with the matrix 4-tuple (A,B,C,D), where x ε{lunate} Fn, u ε{lunate} Fm, yε{lunate} Fp, and A,B,C,D, are matrices of appropriate sizes and with entries in F. For fixed n,m,p, let M be the linear space of all systems (A,B,C,D). Equivalence relations ∼ can be defined on M based on the possibility of changes of basis inthe state space, the input space, or the output space, and the possibility of state feedback and/or output feedback. We characterize those nonsingular linear operators φ on M that satisfy φ(X) ∼ φ(Y) whenever X ∼ Y. © 1992.
Persistent Identifierhttp://hdl.handle.net/10722/156045
ISSN
2015 Impact Factor: 0.965
2015 SCImago Journal Rankings: 0.837
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLi, CKen_US
dc.contributor.authorRodman, Len_US
dc.contributor.authorTsing, NKen_US
dc.date.accessioned2012-08-08T08:40:11Z-
dc.date.available2012-08-08T08:40:11Z-
dc.date.issued1992en_US
dc.identifier.citationLinear Algebra And Its Applications, 1992, v. 161 C, p. 165-225en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://hdl.handle.net/10722/156045-
dc.description.abstractLet F be C or R. A finite-dimensional linear time-invariant system is described in state-space form by [xdot] = Ax + Bu, y = Cx + Du, and is identified with the matrix 4-tuple (A,B,C,D), where x ε{lunate} Fn, u ε{lunate} Fm, yε{lunate} Fp, and A,B,C,D, are matrices of appropriate sizes and with entries in F. For fixed n,m,p, let M be the linear space of all systems (A,B,C,D). Equivalence relations ∼ can be defined on M based on the possibility of changes of basis inthe state space, the input space, or the output space, and the possibility of state feedback and/or output feedback. We characterize those nonsingular linear operators φ on M that satisfy φ(X) ∼ φ(Y) whenever X ∼ Y. © 1992.en_US
dc.languageengen_US
dc.publisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/laaen_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.titleLinear operators preserving certain equivalence relations originating in system theoryen_US
dc.typeArticleen_US
dc.identifier.emailTsing, NK:nktsing@hku.hken_US
dc.identifier.authorityTsing, NK=rp00794en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/0024-3795(92)90011-X-
dc.identifier.scopuseid_2-s2.0-0007414990en_US
dc.identifier.volume161en_US
dc.identifier.issueCen_US
dc.identifier.spage165en_US
dc.identifier.epage225en_US
dc.identifier.isiWOS:A1992HA04300011-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridLi, CK=8048590800en_US
dc.identifier.scopusauthoridRodman, L=7006626172en_US
dc.identifier.scopusauthoridTsing, NK=6602663351en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats