File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Hilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systems

TitleHilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systems
Authors
KeywordsGradient
Hilbert-Schmidt-Hankel Norm
Matrix Second-Order Linear System
Model Reduction
Issue Date2011
PublisherHuanan Ligong Daxue. The Journal's web site is located at http://jcta.alljournals.ac.cn/cta_en/ch/index.aspx
Citation
Journal Of Control Theory And Applications, 2011, v. 9 n. 4, p. 571-578 How to Cite?
Abstract
This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique. © 2011 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
DescriptionThe article can be viewed at http://jcta.alljournals.ac.cn/cta_en/ch/reader/view_abstract.aspx?file_no=JCTA09300&flag=1
Persistent Identifierhttp://hdl.handle.net/10722/155699
ISSN
2013 SCImago Journal Rankings: 0.406
References

 

DC FieldValueLanguage
dc.contributor.authorWang, Qen_US
dc.contributor.authorZhong, Ten_US
dc.contributor.authorWong, Nen_US
dc.contributor.authorWang, Qen_US
dc.date.accessioned2012-08-08T08:34:52Z-
dc.date.available2012-08-08T08:34:52Z-
dc.date.issued2011en_US
dc.identifier.citationJournal Of Control Theory And Applications, 2011, v. 9 n. 4, p. 571-578en_US
dc.identifier.issn1672-6340en_US
dc.identifier.urihttp://hdl.handle.net/10722/155699-
dc.descriptionThe article can be viewed at http://jcta.alljournals.ac.cn/cta_en/ch/reader/view_abstract.aspx?file_no=JCTA09300&flag=1-
dc.description.abstractThis paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique. © 2011 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.en_US
dc.languageengen_US
dc.publisherHuanan Ligong Daxue. The Journal's web site is located at http://jcta.alljournals.ac.cn/cta_en/ch/index.aspxen_US
dc.relation.ispartofJournal of Control Theory and Applicationsen_US
dc.subjectGradienten_US
dc.subjectHilbert-Schmidt-Hankel Normen_US
dc.subjectMatrix Second-Order Linear Systemen_US
dc.subjectModel Reductionen_US
dc.titleHilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systemsen_US
dc.typeArticleen_US
dc.identifier.emailWong, N:nwong@eee.hku.hken_US
dc.identifier.authorityWong, N=rp00190en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/s11768-011-9300-6en_US
dc.identifier.scopuseid_2-s2.0-81855183292en_US
dc.identifier.hkuros209138-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-81855183292&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume9en_US
dc.identifier.issue4en_US
dc.identifier.spage571en_US
dc.identifier.epage578en_US
dc.publisher.placeChinaen_US
dc.identifier.scopusauthoridWang, Q=9335766700en_US
dc.identifier.scopusauthoridZhong, T=54404377400en_US
dc.identifier.scopusauthoridWong, N=35235551600en_US
dc.identifier.scopusauthoridWang, Q=36605455100en_US
dc.identifier.citeulike10085215-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats