File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Hilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systems
  • Basic View
  • Metadata View
  • XML View
TitleHilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systems
 
AuthorsWang, Q2 1
Zhong, T3
Wong, N1
Wang, Q3
 
KeywordsGradient
Hilbert-Schmidt-Hankel Norm
Matrix Second-Order Linear System
Model Reduction
 
Issue Date2011
 
PublisherHuanan Ligong Daxue. The Journal's web site is located at http://jcta.alljournals.ac.cn/cta_en/ch/index.aspx
 
CitationJournal Of Control Theory And Applications, 2011, v. 9 n. 4, p. 571-578 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s11768-011-9300-6
 
AbstractThis paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique. © 2011 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
 
DescriptionThe article can be viewed at http://jcta.alljournals.ac.cn/cta_en/ch/reader/view_abstract.aspx?file_no=JCTA09300&flag=1
 
ISSN1672-6340
2012 SCImago Journal Rankings: 0.284
 
DOIhttp://dx.doi.org/10.1007/s11768-011-9300-6
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorWang, Q
 
dc.contributor.authorZhong, T
 
dc.contributor.authorWong, N
 
dc.contributor.authorWang, Q
 
dc.date.accessioned2012-08-08T08:34:52Z
 
dc.date.available2012-08-08T08:34:52Z
 
dc.date.issued2011
 
dc.description.abstractThis paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique. © 2011 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.descriptionThe article can be viewed at http://jcta.alljournals.ac.cn/cta_en/ch/reader/view_abstract.aspx?file_no=JCTA09300&flag=1
 
dc.identifier.citationJournal Of Control Theory And Applications, 2011, v. 9 n. 4, p. 571-578 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s11768-011-9300-6
 
dc.identifier.citeulike10085215
 
dc.identifier.doihttp://dx.doi.org/10.1007/s11768-011-9300-6
 
dc.identifier.epage578
 
dc.identifier.hkuros209138
 
dc.identifier.issn1672-6340
2012 SCImago Journal Rankings: 0.284
 
dc.identifier.issue4
 
dc.identifier.scopuseid_2-s2.0-81855183292
 
dc.identifier.spage571
 
dc.identifier.urihttp://hdl.handle.net/10722/155699
 
dc.identifier.volume9
 
dc.languageeng
 
dc.publisherHuanan Ligong Daxue. The Journal's web site is located at http://jcta.alljournals.ac.cn/cta_en/ch/index.aspx
 
dc.publisher.placeChina
 
dc.relation.ispartofJournal of Control Theory and Applications
 
dc.relation.referencesReferences in Scopus
 
dc.subjectGradient
 
dc.subjectHilbert-Schmidt-Hankel Norm
 
dc.subjectMatrix Second-Order Linear System
 
dc.subjectModel Reduction
 
dc.titleHilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systems
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Wang, Q</contributor.author>
<contributor.author>Zhong, T</contributor.author>
<contributor.author>Wong, N</contributor.author>
<contributor.author>Wang, Q</contributor.author>
<date.accessioned>2012-08-08T08:34:52Z</date.accessioned>
<date.available>2012-08-08T08:34:52Z</date.available>
<date.issued>2011</date.issued>
<identifier.citation>Journal Of Control Theory And Applications, 2011, v. 9 n. 4, p. 571-578</identifier.citation>
<identifier.issn>1672-6340</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/155699</identifier.uri>
<description>The article can be viewed at http://jcta.alljournals.ac.cn/cta_en/ch/reader/view_abstract.aspx?file_no=JCTA09300&amp;flag=1</description>
<description.abstract>This paper considers the optimal model reduction problem of matrix second-order linear systems in the sense of Hilbert-Schmidt-Hankel norm, with the reduced order systems preserving the structure of the original systems. The expressions of the error function and its gradient are derived. Two numerical examples are given to illustrate the presented model reduction technique. &#169; 2011 South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.</description.abstract>
<language>eng</language>
<publisher>Huanan Ligong Daxue. The Journal&apos;s web site is located at http://jcta.alljournals.ac.cn/cta_en/ch/index.aspx</publisher>
<relation.ispartof>Journal of Control Theory and Applications</relation.ispartof>
<subject>Gradient</subject>
<subject>Hilbert-Schmidt-Hankel Norm</subject>
<subject>Matrix Second-Order Linear System</subject>
<subject>Model Reduction</subject>
<title>Hilbert-Schmidt-Hankel norm model reduction for matrix second-order linear systems</title>
<type>Article</type>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1007/s11768-011-9300-6</identifier.doi>
<identifier.scopus>eid_2-s2.0-81855183292</identifier.scopus>
<identifier.hkuros>209138</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-81855183292&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>9</identifier.volume>
<identifier.issue>4</identifier.issue>
<identifier.spage>571</identifier.spage>
<identifier.epage>578</identifier.epage>
<publisher.place>China</publisher.place>
<identifier.citeulike>10085215</identifier.citeulike>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Sun Yat-Sen University
  3. South China University of Technology