File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TAC.2005.843848
- Scopus: eid_2-s2.0-16244419436
- WOS: WOS:000227747700007
- Find via
Supplementary
-
Bookmarks:
- CiteULike: 2
- Citations:
- Appears in Collections:
Article: Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach
Title | Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach |
---|---|
Authors | |
Keywords | Linear Matrix Inequality (Lmi) Lyapunov Function Polytopic System Robust Stability Time-Invariant Uncertainty |
Issue Date | 2005 |
Citation | Ieee Transactions On Automatic Control, 2005, v. 50 n. 3, p. 365-370 How to Cite? |
Abstract | In this note, robust stability of state-space models with respect to real parametric uncertainty is considered. Specifically, a new class of parameter-dependent quadratic Lyapunov functions for establishing stability of a polytope of matrices is introduced, i.e., the homogeneous polynomially parameter-dependent quadratic Lyapunov functions (HPD-QLFs). The choice of this class, which contains parameter-dependent quadratic Lyapunov functions whose dependence on the uncertain parameters is expressed as a polynomial homogeneous form, is motivated by the property that a polytope of matrices is stable if and only there exists an HPD-QLF. The main result of the note is a sufficient condition for determining the sought HPD-QLF, which amounts to solving linear matrix inequalities (LMIs) derived via the complete square matricial representation (CSMR) of homogeneous matricial forms and the Lyapunov matrix equation. Numerical examples are provided to demonstrate the effectiveness of the proposed approach. © 2005 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/155259 |
ISSN | 2023 Impact Factor: 6.2 2023 SCImago Journal Rankings: 4.501 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chesi, G | en_US |
dc.contributor.author | Garulli, A | en_US |
dc.contributor.author | Tesi, A | en_US |
dc.contributor.author | Vicino, A | en_US |
dc.date.accessioned | 2012-08-08T08:32:34Z | - |
dc.date.available | 2012-08-08T08:32:34Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.citation | Ieee Transactions On Automatic Control, 2005, v. 50 n. 3, p. 365-370 | en_US |
dc.identifier.issn | 0018-9286 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/155259 | - |
dc.description.abstract | In this note, robust stability of state-space models with respect to real parametric uncertainty is considered. Specifically, a new class of parameter-dependent quadratic Lyapunov functions for establishing stability of a polytope of matrices is introduced, i.e., the homogeneous polynomially parameter-dependent quadratic Lyapunov functions (HPD-QLFs). The choice of this class, which contains parameter-dependent quadratic Lyapunov functions whose dependence on the uncertain parameters is expressed as a polynomial homogeneous form, is motivated by the property that a polytope of matrices is stable if and only there exists an HPD-QLF. The main result of the note is a sufficient condition for determining the sought HPD-QLF, which amounts to solving linear matrix inequalities (LMIs) derived via the complete square matricial representation (CSMR) of homogeneous matricial forms and the Lyapunov matrix equation. Numerical examples are provided to demonstrate the effectiveness of the proposed approach. © 2005 IEEE. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Transactions on Automatic Control | en_US |
dc.subject | Linear Matrix Inequality (Lmi) | en_US |
dc.subject | Lyapunov Function | en_US |
dc.subject | Polytopic System | en_US |
dc.subject | Robust Stability | en_US |
dc.subject | Time-Invariant Uncertainty | en_US |
dc.title | Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach | en_US |
dc.type | Article | en_US |
dc.identifier.email | Chesi, G:chesi@eee.hku.hk | en_US |
dc.identifier.authority | Chesi, G=rp00100 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1109/TAC.2005.843848 | en_US |
dc.identifier.scopus | eid_2-s2.0-16244419436 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-16244419436&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 50 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.spage | 365 | en_US |
dc.identifier.epage | 370 | en_US |
dc.identifier.isi | WOS:000227747700007 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Chesi, G=7006328614 | en_US |
dc.identifier.scopusauthorid | Garulli, A=7003697493 | en_US |
dc.identifier.scopusauthorid | Tesi, A=7007124648 | en_US |
dc.identifier.scopusauthorid | Vicino, A=7006250298 | en_US |
dc.identifier.citeulike | 201165 | - |
dc.identifier.issnl | 0018-9286 | - |