File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/S0196-8904(02)00249-2
- Scopus: eid_2-s2.0-0037411634
- WOS: WOS:000181955600001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system
Title | A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system |
---|---|
Authors | |
Keywords | Adaptive Neuro-Fuzzy Inference System Battery Residual Capacity Electric Vehicles Nickel-Metal Hydride Battery State Of Available Capacity |
Issue Date | 2003 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/enconman |
Citation | Energy Conversion And Management, 2003, v. 44 n. 13, p. 2059-2071 How to Cite? |
Abstract | This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents. © 2002 Elsevier Science Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/155187 |
ISSN | 2023 Impact Factor: 9.9 2023 SCImago Journal Rankings: 2.553 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chau, KT | en_US |
dc.contributor.author | Wu, KC | en_US |
dc.contributor.author | Chan, CC | en_US |
dc.contributor.author | Shen, WX | en_US |
dc.date.accessioned | 2012-08-08T08:32:15Z | - |
dc.date.available | 2012-08-08T08:32:15Z | - |
dc.date.issued | 2003 | en_US |
dc.identifier.citation | Energy Conversion And Management, 2003, v. 44 n. 13, p. 2059-2071 | en_US |
dc.identifier.issn | 0196-8904 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/155187 | - |
dc.description.abstract | This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents. © 2002 Elsevier Science Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/enconman | en_US |
dc.relation.ispartof | Energy Conversion and Management | en_US |
dc.subject | Adaptive Neuro-Fuzzy Inference System | en_US |
dc.subject | Battery Residual Capacity | en_US |
dc.subject | Electric Vehicles | en_US |
dc.subject | Nickel-Metal Hydride Battery | en_US |
dc.subject | State Of Available Capacity | en_US |
dc.title | A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system | en_US |
dc.type | Article | en_US |
dc.identifier.email | Chau, KT:ktchau@eee.hku.hk | en_US |
dc.identifier.authority | Chau, KT=rp00096 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/S0196-8904(02)00249-2 | en_US |
dc.identifier.scopus | eid_2-s2.0-0037411634 | en_US |
dc.identifier.hkuros | 90129 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0037411634&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 44 | en_US |
dc.identifier.issue | 13 | en_US |
dc.identifier.spage | 2059 | en_US |
dc.identifier.epage | 2071 | en_US |
dc.identifier.isi | WOS:000181955600001 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Chau, KT=7202674641 | en_US |
dc.identifier.scopusauthorid | Wu, KC=7404512320 | en_US |
dc.identifier.scopusauthorid | Chan, CC=7404813179 | en_US |
dc.identifier.scopusauthorid | Shen, WX=15756297100 | en_US |
dc.identifier.issnl | 0196-8904 | - |