File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TAC.2002.804476
- Scopus: eid_2-s2.0-0036858331
- WOS: WOS:000179218000009
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Complete characterization of the spherical spectral set
Title | Complete characterization of the spherical spectral set |
---|---|
Authors | |
Keywords | Robustness Spectral Set Spherical Uncertainty |
Issue Date | 2002 |
Citation | Ieee Transactions On Automatic Control, 2002, v. 47 n. 11, p. 1875-1879 How to Cite? |
Abstract | In this note, the problem of computing the spectral set of any given spherical family of polynomials is considered. An algorithm based on the decomposition of the spectral set in three disjoint subsets, with relate points having the same dimension of the back image in the parameter space, is devised. Moreover, the structure of the polynomial function which characterizes the main subset is analyzed. Such an analysis leads to significant simplifications for boundary generation and bounds computation of the spectral set. |
Persistent Identifier | http://hdl.handle.net/10722/155170 |
ISSN | 2023 Impact Factor: 6.2 2023 SCImago Journal Rankings: 4.501 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chesi, G | en_US |
dc.date.accessioned | 2012-08-08T08:32:10Z | - |
dc.date.available | 2012-08-08T08:32:10Z | - |
dc.date.issued | 2002 | en_US |
dc.identifier.citation | Ieee Transactions On Automatic Control, 2002, v. 47 n. 11, p. 1875-1879 | en_US |
dc.identifier.issn | 0018-9286 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/155170 | - |
dc.description.abstract | In this note, the problem of computing the spectral set of any given spherical family of polynomials is considered. An algorithm based on the decomposition of the spectral set in three disjoint subsets, with relate points having the same dimension of the back image in the parameter space, is devised. Moreover, the structure of the polynomial function which characterizes the main subset is analyzed. Such an analysis leads to significant simplifications for boundary generation and bounds computation of the spectral set. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Transactions on Automatic Control | en_US |
dc.subject | Robustness | en_US |
dc.subject | Spectral Set | en_US |
dc.subject | Spherical Uncertainty | en_US |
dc.title | Complete characterization of the spherical spectral set | en_US |
dc.type | Article | en_US |
dc.identifier.email | Chesi, G:chesi@eee.hku.hk | en_US |
dc.identifier.authority | Chesi, G=rp00100 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1109/TAC.2002.804476 | en_US |
dc.identifier.scopus | eid_2-s2.0-0036858331 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0036858331&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.spage | 1875 | en_US |
dc.identifier.epage | 1879 | en_US |
dc.identifier.isi | WOS:000179218000009 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Chesi, G=7006328614 | en_US |
dc.identifier.issnl | 0018-9286 | - |