File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Microscopic mechanism of attenuation of compressional ultrasonic waves in tissue-mimicking phantom materials

TitleMicroscopic mechanism of attenuation of compressional ultrasonic waves in tissue-mimicking phantom materials
Authors
Issue Date1992
Citation
Ultrasonic Imaging, 1992, v. 14 n. 2, p. 121-133 How to Cite?
AbstractAn investigation was performed to determine whether the sound-attenuation- in-suspensions theory of Allegra and Hawley can be used to explain the compressional (longitudinal wave) attenuation of ultrasonically tissue- mimicking materials commonly used in phantoms for testing the performance of medical ultrasound systems. These materials are composed of microscopic graphite particles suspended in a gel. The theory was first tested using materials containing spherical glass beads instead of graphite particles because these materials more closely fit the geometric conditions assumed in the theory. For the glass bead type materials as well as the graphite particle type materials, the attenuation coefficients predicted using the Allegra and Hawley model agreed rather well with experimental measurements over the diagnostic frequency range.
Persistent Identifierhttp://hdl.handle.net/10722/154954
ISSN
2015 Impact Factor: 2.111
2015 SCImago Journal Rankings: 0.610
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorWu, EXen_US
dc.contributor.authorGoodsitt, MMen_US
dc.contributor.authorMadsen, ELen_US
dc.date.accessioned2012-08-08T08:31:16Z-
dc.date.available2012-08-08T08:31:16Z-
dc.date.issued1992en_US
dc.identifier.citationUltrasonic Imaging, 1992, v. 14 n. 2, p. 121-133en_US
dc.identifier.issn0161-7346en_US
dc.identifier.urihttp://hdl.handle.net/10722/154954-
dc.description.abstractAn investigation was performed to determine whether the sound-attenuation- in-suspensions theory of Allegra and Hawley can be used to explain the compressional (longitudinal wave) attenuation of ultrasonically tissue- mimicking materials commonly used in phantoms for testing the performance of medical ultrasound systems. These materials are composed of microscopic graphite particles suspended in a gel. The theory was first tested using materials containing spherical glass beads instead of graphite particles because these materials more closely fit the geometric conditions assumed in the theory. For the glass bead type materials as well as the graphite particle type materials, the attenuation coefficients predicted using the Allegra and Hawley model agreed rather well with experimental measurements over the diagnostic frequency range.en_US
dc.languageengen_US
dc.relation.ispartofUltrasonic Imagingen_US
dc.subject.meshBiocompatible Materials - Chemistryen_US
dc.subject.meshChemistry, Physicalen_US
dc.subject.meshEquipment Designen_US
dc.subject.meshGelatin - Chemistryen_US
dc.subject.meshGlass - Chemistryen_US
dc.subject.meshGraphite - Chemistryen_US
dc.subject.meshHumansen_US
dc.subject.meshMicroscopyen_US
dc.subject.meshModels, Chemicalen_US
dc.subject.meshModels, Structuralen_US
dc.subject.meshParticle Sizeen_US
dc.subject.meshPhysicochemical Phenomenaen_US
dc.subject.meshStress, Mechanicalen_US
dc.subject.meshUltrasonicsen_US
dc.subject.meshUltrasonography - Methodsen_US
dc.titleMicroscopic mechanism of attenuation of compressional ultrasonic waves in tissue-mimicking phantom materialsen_US
dc.typeArticleen_US
dc.identifier.emailWu, EX:ewu1@hkucc.hku.hken_US
dc.identifier.authorityWu, EX=rp00193en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/0161-7346(92)90003-Een_US
dc.identifier.pmid1604754-
dc.identifier.scopuseid_2-s2.0-0026581080en_US
dc.identifier.volume14en_US
dc.identifier.issue2en_US
dc.identifier.spage121en_US
dc.identifier.epage133en_US
dc.identifier.isiWOS:A1992HU66000003-
dc.identifier.scopusauthoridWu, EX=7202128034en_US
dc.identifier.scopusauthoridGoodsitt, MM=7005322659en_US
dc.identifier.scopusauthoridMadsen, EL=35510120400en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats