File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: 2-D filter stability tests using polynomial array
  • Basic View
  • Metadata View
  • XML View
Title2-D filter stability tests using polynomial array
 
AuthorsHu, Xiheng1
Ng, TS1
 
Issue Date1990
 
CitationIeee Transactions On Circuits And Systems, 1990, v. 37 n. 4, p. 550-554 [How to Cite?]
DOI: http://dx.doi.org/10.1109/31.52760
 
AbstractA stability table in which F(x, z) = Σaj(x)zj, for y = 0 to n, where aj(x) are real polynomials of order n1, called a polynomial array, is presented, and a systematic procedure for constructing its entries is given. The polynomial array is then used to test the stability of 2-D filters. This is accomplished by first forming a polynomial with real coefficients from the 2-D filter characteristic polynomial F(z1, z2), followed by constructing the polynomial array and then applying the appropriate stability test. This procedure is proved to be equivalent to testing (F(z1, z2) directly. A number of examples are given to illustrate the proposed methodology.
 
ISSN0098-4094
 
DOIhttp://dx.doi.org/10.1109/31.52760
 
ISI Accession Number IDWOS:A1990DF72400014
 
DC FieldValue
dc.contributor.authorHu, Xiheng
 
dc.contributor.authorNg, TS
 
dc.date.accessioned2012-08-08T08:31:07Z
 
dc.date.available2012-08-08T08:31:07Z
 
dc.date.issued1990
 
dc.description.abstractA stability table in which F(x, z) = Σaj(x)zj, for y = 0 to n, where aj(x) are real polynomials of order n1, called a polynomial array, is presented, and a systematic procedure for constructing its entries is given. The polynomial array is then used to test the stability of 2-D filters. This is accomplished by first forming a polynomial with real coefficients from the 2-D filter characteristic polynomial F(z1, z2), followed by constructing the polynomial array and then applying the appropriate stability test. This procedure is proved to be equivalent to testing (F(z1, z2) directly. A number of examples are given to illustrate the proposed methodology.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationIeee Transactions On Circuits And Systems, 1990, v. 37 n. 4, p. 550-554 [How to Cite?]
DOI: http://dx.doi.org/10.1109/31.52760
 
dc.identifier.doihttp://dx.doi.org/10.1109/31.52760
 
dc.identifier.epage554
 
dc.identifier.isiWOS:A1990DF72400014
 
dc.identifier.issn0098-4094
 
dc.identifier.issue4
 
dc.identifier.scopuseid_2-s2.0-0025416556
 
dc.identifier.spage550
 
dc.identifier.urihttp://hdl.handle.net/10722/154909
 
dc.identifier.volume37
 
dc.languageeng
 
dc.relation.ispartofIEEE Transactions on Circuits and Systems
 
dc.title2-D filter stability tests using polynomial array
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Hu, Xiheng</contributor.author>
<contributor.author>Ng, TS</contributor.author>
<date.accessioned>2012-08-08T08:31:07Z</date.accessioned>
<date.available>2012-08-08T08:31:07Z</date.available>
<date.issued>1990</date.issued>
<identifier.citation>Ieee Transactions On Circuits And Systems, 1990, v. 37 n. 4, p. 550-554</identifier.citation>
<identifier.issn>0098-4094</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/154909</identifier.uri>
<description.abstract>A stability table in which F(x, z) = &#931;aj(x)zj, for y = 0 to n, where aj(x) are real polynomials of order n1, called a polynomial array, is presented, and a systematic procedure for constructing its entries is given. The polynomial array is then used to test the stability of 2-D filters. This is accomplished by first forming a polynomial with real coefficients from the 2-D filter characteristic polynomial F(z1, z2), followed by constructing the polynomial array and then applying the appropriate stability test. This procedure is proved to be equivalent to testing (F(z1, z2) directly. A number of examples are given to illustrate the proposed methodology.</description.abstract>
<language>eng</language>
<relation.ispartof>IEEE Transactions on Circuits and Systems</relation.ispartof>
<title>2-D filter stability tests using polynomial array</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1109/31.52760</identifier.doi>
<identifier.scopus>eid_2-s2.0-0025416556</identifier.scopus>
<identifier.volume>37</identifier.volume>
<identifier.issue>4</identifier.issue>
<identifier.spage>550</identifier.spage>
<identifier.epage>554</identifier.epage>
<identifier.isi>WOS:A1990DF72400014</identifier.isi>
</item>
Author Affiliations
  1. University of Wollongong