**Article:**2-D filter stability tests using polynomial array

Title | 2-D filter stability tests using polynomial array |
---|---|

Authors | Hu, Xiheng1 Ng, TS1 |

Issue Date | 1990 |

Citation | Ieee Transactions On Circuits And Systems, 1990, v. 37 n. 4, p. 550-554 [How to Cite?] DOI: http://dx.doi.org/10.1109/31.52760 |

Abstract | A stability table in which F(x, z) = Σaj(x)zj, for y = 0 to n, where aj(x) are real polynomials of order n1, called a polynomial array, is presented, and a systematic procedure for constructing its entries is given. The polynomial array is then used to test the stability of 2-D filters. This is accomplished by first forming a polynomial with real coefficients from the 2-D filter characteristic polynomial F(z1, z2), followed by constructing the polynomial array and then applying the appropriate stability test. This procedure is proved to be equivalent to testing (F(z1, z2) directly. A number of examples are given to illustrate the proposed methodology. |

ISSN | 0098-4094 |

DOI | http://dx.doi.org/10.1109/31.52760 |

ISI Accession Number ID | WOS:A1990DF72400014 |

DC Field | Value |
---|---|

dc.contributor.author | Hu, Xiheng |

dc.contributor.author | Ng, TS |

dc.date.accessioned | 2012-08-08T08:31:07Z |

dc.date.available | 2012-08-08T08:31:07Z |

dc.date.issued | 1990 |

dc.description.abstract | A stability table in which F(x, z) = Σaj(x)zj, for y = 0 to n, where aj(x) are real polynomials of order n1, called a polynomial array, is presented, and a systematic procedure for constructing its entries is given. The polynomial array is then used to test the stability of 2-D filters. This is accomplished by first forming a polynomial with real coefficients from the 2-D filter characteristic polynomial F(z1, z2), followed by constructing the polynomial array and then applying the appropriate stability test. This procedure is proved to be equivalent to testing (F(z1, z2) directly. A number of examples are given to illustrate the proposed methodology. |

dc.description.nature | Link_to_subscribed_fulltext |

dc.identifier.citation | Ieee Transactions On Circuits And Systems, 1990, v. 37 n. 4, p. 550-554 [How to Cite?] DOI: http://dx.doi.org/10.1109/31.52760 |

dc.identifier.doi | http://dx.doi.org/10.1109/31.52760 |

dc.identifier.epage | 554 |

dc.identifier.isi | WOS:A1990DF72400014 |

dc.identifier.issn | 0098-4094 |

dc.identifier.issue | 4 |

dc.identifier.scopus | eid_2-s2.0-0025416556 |

dc.identifier.spage | 550 |

dc.identifier.uri | http://hdl.handle.net/10722/154909 |

dc.identifier.volume | 37 |

dc.language | eng |

dc.relation.ispartof | IEEE Transactions on Circuits and Systems |

dc.title | 2-D filter stability tests using polynomial array |

dc.type | Article |

<?xml encoding="utf-8" version="1.0"?> <item><contributor.author>Hu, Xiheng</contributor.author> <contributor.author>Ng, TS</contributor.author> <date.accessioned>2012-08-08T08:31:07Z</date.accessioned> <date.available>2012-08-08T08:31:07Z</date.available> <date.issued>1990</date.issued> <identifier.citation>Ieee Transactions On Circuits And Systems, 1990, v. 37 n. 4, p. 550-554</identifier.citation> <identifier.issn>0098-4094</identifier.issn> <identifier.uri>http://hdl.handle.net/10722/154909</identifier.uri> <description.abstract>A stability table in which F(x, z) = Σaj(x)zj, for y = 0 to n, where aj(x) are real polynomials of order n1, called a polynomial array, is presented, and a systematic procedure for constructing its entries is given. The polynomial array is then used to test the stability of 2-D filters. This is accomplished by first forming a polynomial with real coefficients from the 2-D filter characteristic polynomial F(z1, z2), followed by constructing the polynomial array and then applying the appropriate stability test. This procedure is proved to be equivalent to testing (F(z1, z2) directly. A number of examples are given to illustrate the proposed methodology.</description.abstract> <language>eng</language> <relation.ispartof>IEEE Transactions on Circuits and Systems</relation.ispartof> <title>2-D filter stability tests using polynomial array</title> <type>Article</type> <description.nature>Link_to_subscribed_fulltext</description.nature> <identifier.doi>10.1109/31.52760</identifier.doi> <identifier.scopus>eid_2-s2.0-0025416556</identifier.scopus> <identifier.volume>37</identifier.volume> <identifier.issue>4</identifier.issue> <identifier.spage>550</identifier.spage> <identifier.epage>554</identifier.epage> <identifier.isi>WOS:A1990DF72400014</identifier.isi> </item>

Author Affiliations

- University of Wollongong