File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Hankel-norm model reduction with fixed modes

TitleHankel-norm model reduction with fixed modes
Authors
Issue Date1990
Citation
Ieee Transactions On Automatic Control, 1990, v. 35 n. 3, p. 373-377 How to Cite?
AbstractA constrained Hankel-norm approximation problem is considered. The reduced-order model is required to retain as a subset of its poles some prescribed eigenvalues from the original system. The constraint approximation problem is solved with an optimal Hankel-norm criterion, and an L∞ error bound for the approximation error is provided. The proposed method for model reduction can be described as a partial eigenvalue preservation method. The reduced-order model is allowed to have a set of free poles in addition to eigenvalues which are preserved from the original system because of physical considerations. Although the method can be used in conjunction with the dominant mode concept, it is equally feasible to retain some eigenvalues of particular interest (but otherwise nondominant) and let the free poles take care of the dominant characteristics of the system.
Persistent Identifierhttp://hdl.handle.net/10722/154906
ISSN
2015 Impact Factor: 2.777
2015 SCImago Journal Rankings: 4.238
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHung, YSen_US
dc.contributor.authorMuzlifah, MAen_US
dc.date.accessioned2012-08-08T08:31:07Z-
dc.date.available2012-08-08T08:31:07Z-
dc.date.issued1990en_US
dc.identifier.citationIeee Transactions On Automatic Control, 1990, v. 35 n. 3, p. 373-377en_US
dc.identifier.issn0018-9286en_US
dc.identifier.urihttp://hdl.handle.net/10722/154906-
dc.description.abstractA constrained Hankel-norm approximation problem is considered. The reduced-order model is required to retain as a subset of its poles some prescribed eigenvalues from the original system. The constraint approximation problem is solved with an optimal Hankel-norm criterion, and an L∞ error bound for the approximation error is provided. The proposed method for model reduction can be described as a partial eigenvalue preservation method. The reduced-order model is allowed to have a set of free poles in addition to eigenvalues which are preserved from the original system because of physical considerations. Although the method can be used in conjunction with the dominant mode concept, it is equally feasible to retain some eigenvalues of particular interest (but otherwise nondominant) and let the free poles take care of the dominant characteristics of the system.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Automatic Controlen_US
dc.titleHankel-norm model reduction with fixed modesen_US
dc.typeArticleen_US
dc.identifier.emailHung, YS:yshung@eee.hku.hken_US
dc.identifier.authorityHung, YS=rp00220en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/9.50363en_US
dc.identifier.scopuseid_2-s2.0-0025404743en_US
dc.identifier.volume35en_US
dc.identifier.issue3en_US
dc.identifier.spage373en_US
dc.identifier.epage377en_US
dc.identifier.isiWOS:A1990CU33900028-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridHung, YS=8091656200en_US
dc.identifier.scopusauthoridMuzlifah, MA=6504141594en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats