File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: FINDING MINIMUM RECTILINEAR DISTANCE PATHS IN THE PRESENCE OF BARRIERS.

TitleFINDING MINIMUM RECTILINEAR DISTANCE PATHS IN THE PRESENCE OF BARRIERS.
Authors
Issue Date1981
PublisherJohn Wiley & Sons, Inc. The Journal's web site is located at http://www.interscience.wiley.com/jpages/0028-3045/
Citation
Networks, 1981, v. 11 n. 3, p. 285-304 How to Cite?
AbstractGiven a set of origin-destination points in the plane and a set of polygonal barriers to travel, an efficient algorithm is developed for finding minimal distance feasible paths between the points, assuming that all travel occurs according to the rectilinear distance metric. By geometrical arguments the problem is reduced to a finite network problem. The computational complexity of the procedure is discussed, followed by a numerical example.
Persistent Identifierhttp://hdl.handle.net/10722/154810
ISSN
2023 Impact Factor: 1.6
2023 SCImago Journal Rankings: 0.908
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLarson, Richard Cen_US
dc.contributor.authorLi, Victor OKen_US
dc.date.accessioned2012-08-08T08:30:45Z-
dc.date.available2012-08-08T08:30:45Z-
dc.date.issued1981en_US
dc.identifier.citationNetworks, 1981, v. 11 n. 3, p. 285-304en_US
dc.identifier.issn0028-3045en_US
dc.identifier.urihttp://hdl.handle.net/10722/154810-
dc.description.abstractGiven a set of origin-destination points in the plane and a set of polygonal barriers to travel, an efficient algorithm is developed for finding minimal distance feasible paths between the points, assuming that all travel occurs according to the rectilinear distance metric. By geometrical arguments the problem is reduced to a finite network problem. The computational complexity of the procedure is discussed, followed by a numerical example.en_US
dc.languageengen_US
dc.publisherJohn Wiley & Sons, Inc. The Journal's web site is located at http://www.interscience.wiley.com/jpages/0028-3045/en_US
dc.relation.ispartofNetworksen_US
dc.titleFINDING MINIMUM RECTILINEAR DISTANCE PATHS IN THE PRESENCE OF BARRIERS.en_US
dc.typeArticleen_US
dc.identifier.emailLi, Victor OK:vli@eee.hku.hken_US
dc.identifier.authorityLi, Victor OK=rp00150en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0019609522en_US
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.spage285en_US
dc.identifier.epage304en_US
dc.identifier.isiWOS:A1981MB66000006-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridLarson, Richard C=7402161914en_US
dc.identifier.scopusauthoridLi, Victor OK=7202621685en_US
dc.identifier.issnl0028-3045-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats