File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Scopus: eid_2-s2.0-0013464047
- WOS: WOS:000087895600004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Iterative statistical approach to blind image deconvolution
Title | Iterative statistical approach to blind image deconvolution |
---|---|
Authors | |
Issue Date | 2000 |
Citation | Journal Of The Optical Society Of America A: Optics And Image Science, And Vision, 2000, v. 17 n. 7, p. 1177-1184 How to Cite? |
Abstract | Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is referred to as blind deconvolution. We employ a statistical point of view of the data and use a modified maximum a posteriori approach to identify the most probable object and blur given the observed image. To facilitate computation we use an iterative method, which is an extension of the traditional expectation-maximization method, instead of direct optimization. We derive separate formulas for the updates of the estimates in each iteration to enhance the deconvolution results, which are based on the specific nature of our a priori knowledge available about the object and the blur. © 2000 Optical Society of America. |
Persistent Identifier | http://hdl.handle.net/10722/154779 |
ISSN | |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lam, EY | en_US |
dc.contributor.author | Goodman, JW | en_US |
dc.date.accessioned | 2012-08-08T08:30:37Z | - |
dc.date.available | 2012-08-08T08:30:37Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.citation | Journal Of The Optical Society Of America A: Optics And Image Science, And Vision, 2000, v. 17 n. 7, p. 1177-1184 | en_US |
dc.identifier.issn | 0740-3232 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/154779 | - |
dc.description.abstract | Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is referred to as blind deconvolution. We employ a statistical point of view of the data and use a modified maximum a posteriori approach to identify the most probable object and blur given the observed image. To facilitate computation we use an iterative method, which is an extension of the traditional expectation-maximization method, instead of direct optimization. We derive separate formulas for the updates of the estimates in each iteration to enhance the deconvolution results, which are based on the specific nature of our a priori knowledge available about the object and the blur. © 2000 Optical Society of America. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Journal of the Optical Society of America A: Optics and Image Science, and Vision | en_US |
dc.title | Iterative statistical approach to blind image deconvolution | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lam, EY:elam@eee.hku.hk | en_US |
dc.identifier.authority | Lam, EY=rp00131 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.scopus | eid_2-s2.0-0013464047 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0013464047&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 17 | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.spage | 1177 | en_US |
dc.identifier.epage | 1184 | en_US |
dc.identifier.isi | WOS:000087895600004 | - |
dc.identifier.scopusauthorid | Lam, EY=7102890004 | en_US |
dc.identifier.scopusauthorid | Goodman, JW=7402288924 | en_US |
dc.identifier.issnl | 0740-3232 | - |