File Download
 
 
Supplementary

Conference Paper: Learning multi-feature human motion patterns by automated near-optimal constrained gravitational clustering
  • Basic View
  • Metadata View
  • XML View
TitleLearning multi-feature human motion patterns by automated near-optimal constrained gravitational clustering
 
AuthorsChen, Z
Yung, NHC
 
Issue Date2011
 
PublisherIAPR.
 
CitationThe 12th IAPR Conference on Machine Vision Applications (MVA2011), Nara, Japan, 6-8 June 2011. In Proceedings of the 12th IAPR MVA, 2011, p. 463-466, ref. no. 14-12 [How to Cite?]
 
AbstractThis paper proposes an automated near-optimal gravitational clustering method for learning multi-feature human motion patterns (HMPs). Based on the distance distribution of all observed human trajectories in a …
 
DC FieldValue
dc.contributor.authorChen, Z
 
dc.contributor.authorYung, NHC
 
dc.date.accessioned2012-07-16T09:55:43Z
 
dc.date.available2012-07-16T09:55:43Z
 
dc.date.issued2011
 
dc.description.abstractThis paper proposes an automated near-optimal gravitational clustering method for learning multi-feature human motion patterns (HMPs). Based on the distance distribution of all observed human trajectories in a …
 
dc.description.naturelink_to_OA_fulltext
 
dc.description.otherThe 12th IAPR Conference on Machine Vision Applications (MVA2011), Nara, Japan, 6-8 June 2011. In Proceedings of the 12th IAPR MVA, 2011, p. 463-466, ref. no. 14-12
 
dc.identifier.citationThe 12th IAPR Conference on Machine Vision Applications (MVA2011), Nara, Japan, 6-8 June 2011. In Proceedings of the 12th IAPR MVA, 2011, p. 463-466, ref. no. 14-12 [How to Cite?]
 
dc.identifier.epage466
 
dc.identifier.hkuros201098
 
dc.identifier.spage463
 
dc.identifier.urihttp://hdl.handle.net/10722/153069
 
dc.languageeng
 
dc.publisherIAPR.
 
dc.publisher.placeJapan
 
dc.relation.ispartofProceedings of the 12th IAPR Conference on Machine Vision Applications (MVA 2011)
 
dc.titleLearning multi-feature human motion patterns by automated near-optimal constrained gravitational clustering
 
dc.typeConference_Paper
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chen, Z</contributor.author>
<contributor.author>Yung, NHC</contributor.author>
<date.accessioned>2012-07-16T09:55:43Z</date.accessioned>
<date.available>2012-07-16T09:55:43Z</date.available>
<date.issued>2011</date.issued>
<identifier.citation>The 12th IAPR Conference on Machine Vision Applications (MVA2011), Nara, Japan, 6-8 June 2011. In Proceedings of the 12th IAPR MVA, 2011, p. 463-466, ref. no. 14-12</identifier.citation>
<identifier.uri>http://hdl.handle.net/10722/153069</identifier.uri>
<description.abstract>This paper proposes an automated near-optimal gravitational clustering method for learning multi-feature human motion patterns (HMPs). Based on the distance distribution of all observed human trajectories in a &#8230;</description.abstract>
<language>eng</language>
<publisher>IAPR.</publisher>
<relation.ispartof>Proceedings of the 12th IAPR Conference on Machine Vision Applications (MVA 2011)</relation.ispartof>
<title>Learning multi-feature human motion patterns by automated near-optimal constrained gravitational clustering</title>
<type>Conference_Paper</type>
<description.nature>link_to_OA_fulltext</description.nature>
<identifier.hkuros>201098</identifier.hkuros>
<identifier.spage>463</identifier.spage>
<identifier.epage>466</identifier.epage>
<publisher.place>Japan</publisher.place>
<description.other>The 12th IAPR Conference on Machine Vision Applications (MVA2011), Nara, Japan, 6-8 June 2011. In Proceedings of the 12th IAPR MVA, 2011, p. 463-466, ref. no. 14-12</description.other>
<bitstream.url>http://hub.hku.hk/bitstream/10722/153069/1/re01.htm</bitstream.url>
</item>