File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Obtuse triangle suppression in anisotropic meshes

TitleObtuse triangle suppression in anisotropic meshes
Authors
KeywordsAnisotropic Mesh
Minkowski Metric
Obtuse Triangles
Surface Remeshing
Triangulation
Issue Date2011
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cagd
Citation
Computer Aided Geometric Design, 2011, v. 28 n. 9, p. 537-548 How to Cite?
AbstractAnisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/152477
ISSN
2023 Impact Factor: 1.3
2023 SCImago Journal Rankings: 0.602
ISI Accession Number ID
Funding AgencyGrant Number
Research Grant Council of Hong Kong718010
718209
NSFC of China60933008
European Research CouncilGOODSHAPE ERC-2tG-205693
Funding Information:

We thank the reviewers for constructive comments. This work is funded in part by the Research Grant Council of Hong Kong (718010 and 718209), the State Key Program of NSFC project of China (60933008) and the European Research Council (GOODSHAPE ERC-2tG-205693).

References

 

DC FieldValueLanguage
dc.contributor.authorSun, Fen_US
dc.contributor.authorChoi, YKen_US
dc.contributor.authorWang, Wen_US
dc.contributor.authorYan, DMen_US
dc.contributor.authorLiu, Yen_US
dc.contributor.authorLévy, Ben_US
dc.date.accessioned2012-06-26T06:39:30Z-
dc.date.available2012-06-26T06:39:30Z-
dc.date.issued2011en_US
dc.identifier.citationComputer Aided Geometric Design, 2011, v. 28 n. 9, p. 537-548en_US
dc.identifier.issn0167-8396en_US
dc.identifier.urihttp://hdl.handle.net/10722/152477-
dc.description.abstractAnisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cagden_US
dc.relation.ispartofComputer Aided Geometric Designen_US
dc.subjectAnisotropic Meshen_US
dc.subjectMinkowski Metricen_US
dc.subjectObtuse Trianglesen_US
dc.subjectSurface Remeshingen_US
dc.subjectTriangulationen_US
dc.titleObtuse triangle suppression in anisotropic meshesen_US
dc.typeArticleen_US
dc.identifier.emailChoi, YK:ykchoi@cs.hku.hken_US
dc.identifier.emailWang, W:wenping@cs.hku.hken_US
dc.identifier.authorityChoi, YK=rp00106en_US
dc.identifier.authorityWang, W=rp00186en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.cagd.2011.09.007en_US
dc.identifier.scopuseid_2-s2.0-81355146381en_US
dc.identifier.hkuros208996-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-81355146381&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume28en_US
dc.identifier.issue9en_US
dc.identifier.spage537en_US
dc.identifier.epage548en_US
dc.identifier.isiWOS:000298207000003-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridSun, F=35068615100en_US
dc.identifier.scopusauthoridChoi, YK=7404777348en_US
dc.identifier.scopusauthoridWang, W=35147101600en_US
dc.identifier.scopusauthoridYan, DM=14825994000en_US
dc.identifier.scopusauthoridLiu, Y=36065585300en_US
dc.identifier.scopusauthoridLévy, B=35264760300en_US
dc.identifier.citeulike9888193-
dc.identifier.issnl0167-8396-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats