File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Scopus: eid_2-s2.0-0028484454
- WOS: WOS:A1994PB45100001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Reparameterization of rational triangular Bézier surfaces
Title | Reparameterization of rational triangular Bézier surfaces |
---|---|
Authors | |
Keywords | Inversion Quadric Surface Rational Triangular Bézier Surface Reparameterization |
Issue Date | 1994 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cagd |
Citation | Computer Aided Geometric Design, 1994, v. 11 n. 4, p. 345-361 How to Cite? |
Abstract | The inversion formula for a parametric surface gives the parameter values for any point on the surface. We show how the inversion formula can be used to solve two reparameterization problems for rational Bézier surfaces. The first is reparameterizing a rational triangular Bézier surface to get a triangular Bézier patch on the surface with any three given corner points. The second is reparameterizing a given parameterization of a quadric surface to get a triangular Bézier patch with three given planar boundary curve segments. Rational linear reparameterizations are used for the first problem, and rational quadratic reparameterizations are used for the second problem. © 1994. |
Persistent Identifier | http://hdl.handle.net/10722/152248 |
ISSN | 2023 Impact Factor: 1.3 2023 SCImago Journal Rankings: 0.602 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Joe, B | en_US |
dc.contributor.author | Wang, W | en_US |
dc.date.accessioned | 2012-06-26T06:36:44Z | - |
dc.date.available | 2012-06-26T06:36:44Z | - |
dc.date.issued | 1994 | en_US |
dc.identifier.citation | Computer Aided Geometric Design, 1994, v. 11 n. 4, p. 345-361 | en_US |
dc.identifier.issn | 0167-8396 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/152248 | - |
dc.description.abstract | The inversion formula for a parametric surface gives the parameter values for any point on the surface. We show how the inversion formula can be used to solve two reparameterization problems for rational Bézier surfaces. The first is reparameterizing a rational triangular Bézier surface to get a triangular Bézier patch on the surface with any three given corner points. The second is reparameterizing a given parameterization of a quadric surface to get a triangular Bézier patch with three given planar boundary curve segments. Rational linear reparameterizations are used for the first problem, and rational quadratic reparameterizations are used for the second problem. © 1994. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cagd | en_US |
dc.relation.ispartof | Computer Aided Geometric Design | en_US |
dc.subject | Inversion | en_US |
dc.subject | Quadric Surface | en_US |
dc.subject | Rational Triangular Bézier Surface | en_US |
dc.subject | Reparameterization | en_US |
dc.title | Reparameterization of rational triangular Bézier surfaces | en_US |
dc.type | Article | en_US |
dc.identifier.email | Wang, W:wenping@cs.hku.hk | en_US |
dc.identifier.authority | Wang, W=rp00186 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.scopus | eid_2-s2.0-0028484454 | en_US |
dc.identifier.volume | 11 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.spage | 345 | en_US |
dc.identifier.epage | 361 | en_US |
dc.identifier.isi | WOS:A1994PB45100001 | - |
dc.publisher.place | Netherlands | en_US |
dc.identifier.scopusauthorid | Joe, B=7005294816 | en_US |
dc.identifier.scopusauthorid | Wang, W=35147101600 | en_US |
dc.identifier.issnl | 0167-8396 | - |