File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Managing uncertain spatio-temporal data

TitleManaging uncertain spatio-temporal data
Authors
Issue Date2011
Citation
Proceedings Of The 2Nd Acm Sigspatial International Workshop On Querying And Mining Uncertain Spatio-Temporal Data, Quest 2011, 2011, p. 16-20 How to Cite?
AbstractMany spatial query problems defined on uncertain data are computationally expensive, in particular, if in addition to spatial attributes, a time component is added. Although there exists a wide range of applications dealing with uncertain spatio-temporal data, there is no solution for efficient management of such data available yet. This paper is the first work to propose general models for spatiotemporal uncertain data that have the potential to allow efficient processing on a wide range of queries. The main challenge here is to unfold this potential by developing new algorithms based on these models. In addition, we give examples of interesting spatiotemporal queries on uncertain data. Copyright 2011 ACM.
Persistent Identifierhttp://hdl.handle.net/10722/152019
References

 

DC FieldValueLanguage
dc.contributor.authorBernecker, Ten_US
dc.contributor.authorEmrich, Ten_US
dc.contributor.authorKriegel, HPen_US
dc.contributor.authorZuefle, Aen_US
dc.contributor.authorChen, Len_US
dc.contributor.authorLian, Xen_US
dc.contributor.authorMamoulis, Nen_US
dc.date.accessioned2012-06-26T06:32:32Z-
dc.date.available2012-06-26T06:32:32Z-
dc.date.issued2011en_US
dc.identifier.citationProceedings Of The 2Nd Acm Sigspatial International Workshop On Querying And Mining Uncertain Spatio-Temporal Data, Quest 2011, 2011, p. 16-20en_US
dc.identifier.urihttp://hdl.handle.net/10722/152019-
dc.description.abstractMany spatial query problems defined on uncertain data are computationally expensive, in particular, if in addition to spatial attributes, a time component is added. Although there exists a wide range of applications dealing with uncertain spatio-temporal data, there is no solution for efficient management of such data available yet. This paper is the first work to propose general models for spatiotemporal uncertain data that have the potential to allow efficient processing on a wide range of queries. The main challenge here is to unfold this potential by developing new algorithms based on these models. In addition, we give examples of interesting spatiotemporal queries on uncertain data. Copyright 2011 ACM.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of the 2nd ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data, QUeST 2011en_US
dc.titleManaging uncertain spatio-temporal dataen_US
dc.typeConference_Paperen_US
dc.identifier.emailMamoulis, N:nikos@cs.hku.hken_US
dc.identifier.authorityMamoulis, N=rp00155en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1145/2064969.2064972en_US
dc.identifier.scopuseid_2-s2.0-83055169677en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-83055169677&selection=ref&src=s&origin=recordpageen_US
dc.identifier.spage16en_US
dc.identifier.epage20en_US
dc.identifier.scopusauthoridBernecker, T=24512341500en_US
dc.identifier.scopusauthoridEmrich, T=35104699500en_US
dc.identifier.scopusauthoridKriegel, HP=7005718994en_US
dc.identifier.scopusauthoridZuefle, A=25029386800en_US
dc.identifier.scopusauthoridChen, L=35316798200en_US
dc.identifier.scopusauthoridLian, X=23392904500en_US
dc.identifier.scopusauthoridMamoulis, N=6701782749en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats