File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Exact parameterized multilinear monomial counting via k-layer subset convolution and k-disjoint sum

TitleExact parameterized multilinear monomial counting via k-layer subset convolution and k-disjoint sum
Authors
KeywordsArithmetic circuit
Counting problems
Parameterized problems
Polynomial factor
Polynomial space
Issue Date2011
PublisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/
Citation
The 17th Annual International Computing and Combinatorics Conference (COCOON'11), Dallas, TX., 14-16 August 2011. In Lecture Notes in Computer Science, 2011, v. 6842, p. 74-85 How to Cite?
AbstractWe present new algorithms for exact multilinear k-monomial counting which is to compute the sum of coefficients of all degree-k multilinear monomials in a given polynomial P over a ring R described by an arithmetic circuit C. If the polynomial can be represented as a product of two polynomials with degree at most d< k, our algorithm can solve this problem in ...
DescriptionLNCS v. 6842 has title: Computing and combinatorics: proceedings of the 17th Annual International Conference, COCOON 2011
Persistent Identifierhttp://hdl.handle.net/10722/152004
ISBN
ISSN
2005 Impact Factor: 0.402
2015 SCImago Journal Rankings: 0.252
References

 

DC FieldValueLanguage
dc.contributor.authorYu, Den_US
dc.contributor.authorWang, Yen_US
dc.contributor.authorHua, Qen_US
dc.contributor.authorLau, FCMen_US
dc.date.accessioned2012-06-26T06:32:20Z-
dc.date.available2012-06-26T06:32:20Z-
dc.date.issued2011en_US
dc.identifier.citationThe 17th Annual International Computing and Combinatorics Conference (COCOON'11), Dallas, TX., 14-16 August 2011. In Lecture Notes in Computer Science, 2011, v. 6842, p. 74-85en_US
dc.identifier.isbn9783642226847-
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10722/152004-
dc.descriptionLNCS v. 6842 has title: Computing and combinatorics: proceedings of the 17th Annual International Conference, COCOON 2011-
dc.description.abstractWe present new algorithms for exact multilinear k-monomial counting which is to compute the sum of coefficients of all degree-k multilinear monomials in a given polynomial P over a ring R described by an arithmetic circuit C. If the polynomial can be represented as a product of two polynomials with degree at most d< k, our algorithm can solve this problem in ...en_US
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/en_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.rightsThe original publication is available at www.springerlink.com-
dc.subjectArithmetic circuit-
dc.subjectCounting problems-
dc.subjectParameterized problems-
dc.subjectPolynomial factor-
dc.subjectPolynomial space-
dc.titleExact parameterized multilinear monomial counting via k-layer subset convolution and k-disjoint sumen_US
dc.typeConference_Paperen_US
dc.identifier.emailYu, D: dxyu@hku.hken_US
dc.identifier.emailHua, Q: huaqs@hku.hk-
dc.identifier.emailLau, FCM: fcmlau@cs.hku.hk-
dc.identifier.authorityLau, FCM=rp00221en_US
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/978-3-642-22685-4_7en_US
dc.identifier.scopuseid_2-s2.0-80052003292en_US
dc.identifier.hkuros211551-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-80052003292&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume6842en_US
dc.identifier.spage74en_US
dc.identifier.epage85en_US
dc.publisher.placeGermanyen_US
dc.description.otherThe 17th Annual International Computing and Combinatorics Conference (COCOON'11), Dallas, TX., 14-16 August 2011. In Lecture Notes in Computer Science, 2011, v. 6842, p. 74-85-
dc.identifier.scopusauthoridLau, FCM=7102749723en_US
dc.identifier.scopusauthoridHua, QS=15060090400en_US
dc.identifier.scopusauthoridWang, Y=35222735000en_US
dc.identifier.scopusauthoridYu, D=30767911100en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats