File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Conference Paper: Fast convergence for consensus in dynamic networks
  • Basic View
  • Metadata View
  • XML View
TitleFast convergence for consensus in dynamic networks
 
AuthorsChan, HTH1
Ning, L1
 
KeywordsConvergence time
Dynamic network
Fast convergence
Time step
Underlying networks
Weighted averages
 
Issue Date2011
 
PublisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/
 
CitationThe 38th International Colloquium on Automata, Languages and Programming (ICALP 2011), Zurich, Switzerland, 4-8 July 2011. In Lecture Notes in Computer Science, 2011, v. 6756 pt. 2, p. 514-525 [How to Cite?]
DOI: http://dx.doi.org/10.1007/978-3-642-22012-8_41
 
AbstractWe study the convergence time required to achieve consensus in dynamic networks. In each time step, a node's value is updated to some weighted average of its neighbors' and its old values. We study the case when the underlying network is dynamic, and investigate different averaging models. Both our analysis and experiments show that dynamic networks exhibit fast convergence behavior, even under very mild connectivity assumptions. © 2011 Springer-Verlag.
 
DescriptionLNCS v. 3756 entitled: Automata, languages and programming : 38th international colloquium, ICALP 2011 ... proceedings
 
ISBN978-364222011-1
 
ISSN0302-9743
2012 SCImago Journal Rankings: 0.332
 
DOIhttp://dx.doi.org/10.1007/978-3-642-22012-8_41
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorChan, HTH
 
dc.contributor.authorNing, L
 
dc.date.accessioned2012-06-26T06:32:18Z
 
dc.date.available2012-06-26T06:32:18Z
 
dc.date.issued2011
 
dc.description.abstractWe study the convergence time required to achieve consensus in dynamic networks. In each time step, a node's value is updated to some weighted average of its neighbors' and its old values. We study the case when the underlying network is dynamic, and investigate different averaging models. Both our analysis and experiments show that dynamic networks exhibit fast convergence behavior, even under very mild connectivity assumptions. © 2011 Springer-Verlag.
 
dc.description.naturepostprint
 
dc.descriptionLNCS v. 3756 entitled: Automata, languages and programming : 38th international colloquium, ICALP 2011 ... proceedings
 
dc.identifier.citationThe 38th International Colloquium on Automata, Languages and Programming (ICALP 2011), Zurich, Switzerland, 4-8 July 2011. In Lecture Notes in Computer Science, 2011, v. 6756 pt. 2, p. 514-525 [How to Cite?]
DOI: http://dx.doi.org/10.1007/978-3-642-22012-8_41
 
dc.identifier.doihttp://dx.doi.org/10.1007/978-3-642-22012-8_41
 
dc.identifier.epage525
 
dc.identifier.hkuros188721
 
dc.identifier.isbn978-364222011-1
 
dc.identifier.issn0302-9743
2012 SCImago Journal Rankings: 0.332
 
dc.identifier.issuept. 2
 
dc.identifier.scopuseid_2-s2.0-79959927794
 
dc.identifier.spage514
 
dc.identifier.urihttp://hdl.handle.net/10722/152001
 
dc.identifier.volume6756
 
dc.languageeng
 
dc.publisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/
 
dc.publisher.placeGermany
 
dc.relation.ispartofLecture Notes in Computer Science
 
dc.relation.referencesReferences in Scopus
 
dc.rightsThe original publication is available at www.springerlink.com
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.subjectConvergence time
 
dc.subjectDynamic network
 
dc.subjectFast convergence
 
dc.subjectTime step
 
dc.subjectUnderlying networks
 
dc.subjectWeighted averages
 
dc.titleFast convergence for consensus in dynamic networks
 
dc.typeConference_Paper
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chan, HTH</contributor.author>
<contributor.author>Ning, L</contributor.author>
<date.accessioned>2012-06-26T06:32:18Z</date.accessioned>
<date.available>2012-06-26T06:32:18Z</date.available>
<date.issued>2011</date.issued>
<identifier.citation>The 38th International Colloquium on Automata, Languages and Programming (ICALP 2011), Zurich, Switzerland, 4-8 July 2011. In Lecture Notes in Computer Science, 2011, v. 6756 pt. 2, p. 514-525</identifier.citation>
<identifier.isbn>978-364222011-1</identifier.isbn>
<identifier.issn>0302-9743</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/152001</identifier.uri>
<description>LNCS v. 3756 entitled: Automata, languages and programming : 38th international colloquium, ICALP 2011 ... proceedings</description>
<description.abstract>We study the convergence time required to achieve consensus in dynamic networks. In each time step, a node&apos;s value is updated to some weighted average of its neighbors&apos; and its old values. We study the case when the underlying network is dynamic, and investigate different averaging models. Both our analysis and experiments show that dynamic networks exhibit fast convergence behavior, even under very mild connectivity assumptions. &#169; 2011 Springer-Verlag.</description.abstract>
<language>eng</language>
<publisher>Springer Verlag. The Journal&apos;s web site is located at http://springerlink.com/content/105633/</publisher>
<relation.ispartof>Lecture Notes in Computer Science</relation.ispartof>
<rights>The original publication is available at www.springerlink.com</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<subject>Convergence time</subject>
<subject>Dynamic network</subject>
<subject>Fast convergence</subject>
<subject>Time step</subject>
<subject>Underlying networks</subject>
<subject>Weighted averages</subject>
<title>Fast convergence for consensus in dynamic networks</title>
<type>Conference_Paper</type>
<description.nature>postprint</description.nature>
<identifier.doi>10.1007/978-3-642-22012-8_41</identifier.doi>
<identifier.scopus>eid_2-s2.0-79959927794</identifier.scopus>
<identifier.hkuros>188721</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-79959927794&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>6756</identifier.volume>
<identifier.issue>pt. 2</identifier.issue>
<identifier.spage>514</identifier.spage>
<identifier.epage>525</identifier.epage>
<publisher.place>Germany</publisher.place>
<bitstream.url>http://hub.hku.hk/bitstream/10722/152001/1/Content.pdf</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong