File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Online frequency assignment in wireless communication networks

TitleOnline frequency assignment in wireless communication networks
Authors
Issue Date2007
PublisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/
Citation
Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), 2007, v. 4598 LNCS, p. 2 How to Cite?
AbstractWireless communication has many applications since its invention more than a century ago. The frequency spectrum used for communication is a scarce resource and the Frequency Assignment Problem (FAP), aiming for better utilization of the frequencies, has been extensively studied in the past 20-30 years. Because of the rapid development of new wireless applications such as digital cellular network, cellular phone, the FAP problem has become more important. In Frequency Division Multiplexing (FDM) networks, a geographic area is divided into small cellular regions or cells, usually regular hexagons in shape. Each cell contains one base station that communicates with other base stations via a high-speed wired network. Calls between any two clients (even within the same cell) must be established through base stations. When a call arrives, the nearest base station must assign a frequency from the available spectrum to the call without causing any interference with other calls. Interference may occur, which distorts the radio signals, when the same frequency is assigned to two different calls emanating from cells that are geographically close to each other. Thus the FAP problem can be viewed as a problem of multi-coloring a hexagon graph with the minimum number of colors when each vertex of the graph is associated with an integer that represents the number of calls in a cell. FAP has attracted more attention recently because of the following: a) Online analysis techniques: FAP problem is known to be NP-complete and many approximation algorithms have been proposed in the past. As frequency assignments have to be done without knowledge of future call requests and releases, online algorithms have been proposed and competitive analysis has been used to measure their performance. b) New technology and application: Wideband Code-Division Multiple-Access (W-CDMA) technology is a new technology used for the implementation of 3G cellular system. Orthogonal Variable Spreading Factor (OVSF) codes are used to satisfy requests with different data rate requirements. FAP with OVSF code trees representing the frequency spectrum becomes an important problem. © Springer-Verlag Berlin Heidelberg 2007.
Persistent Identifierhttp://hdl.handle.net/10722/151907
ISSN
2023 SCImago Journal Rankings: 0.606

 

DC FieldValueLanguage
dc.contributor.authorChin, FYLen_US
dc.date.accessioned2012-06-26T06:30:39Z-
dc.date.available2012-06-26T06:30:39Z-
dc.date.issued2007en_US
dc.identifier.citationLecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), 2007, v. 4598 LNCS, p. 2en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10722/151907-
dc.description.abstractWireless communication has many applications since its invention more than a century ago. The frequency spectrum used for communication is a scarce resource and the Frequency Assignment Problem (FAP), aiming for better utilization of the frequencies, has been extensively studied in the past 20-30 years. Because of the rapid development of new wireless applications such as digital cellular network, cellular phone, the FAP problem has become more important. In Frequency Division Multiplexing (FDM) networks, a geographic area is divided into small cellular regions or cells, usually regular hexagons in shape. Each cell contains one base station that communicates with other base stations via a high-speed wired network. Calls between any two clients (even within the same cell) must be established through base stations. When a call arrives, the nearest base station must assign a frequency from the available spectrum to the call without causing any interference with other calls. Interference may occur, which distorts the radio signals, when the same frequency is assigned to two different calls emanating from cells that are geographically close to each other. Thus the FAP problem can be viewed as a problem of multi-coloring a hexagon graph with the minimum number of colors when each vertex of the graph is associated with an integer that represents the number of calls in a cell. FAP has attracted more attention recently because of the following: a) Online analysis techniques: FAP problem is known to be NP-complete and many approximation algorithms have been proposed in the past. As frequency assignments have to be done without knowledge of future call requests and releases, online algorithms have been proposed and competitive analysis has been used to measure their performance. b) New technology and application: Wideband Code-Division Multiple-Access (W-CDMA) technology is a new technology used for the implementation of 3G cellular system. Orthogonal Variable Spreading Factor (OVSF) codes are used to satisfy requests with different data rate requirements. FAP with OVSF code trees representing the frequency spectrum becomes an important problem. © Springer-Verlag Berlin Heidelberg 2007.en_US
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/en_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.titleOnline frequency assignment in wireless communication networksen_US
dc.typeConference_Paperen_US
dc.identifier.emailChin, FYL:chin@cs.hku.hken_US
dc.identifier.authorityChin, FYL=rp00105en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-37849042627en_US
dc.identifier.volume4598 LNCSen_US
dc.identifier.spage2en_US
dc.publisher.placeGermanyen_US
dc.identifier.scopusauthoridChin, FYL=7005101915en_US
dc.identifier.issnl0302-9743-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats