File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton

TitleAge and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton
Authors
KeywordsGranulite
Lithospheric Evolution
Lower Crustal Xenolith
North China Craton
Paleogene Underplating
Pyroxenite
Issue Date2009
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/chemgeo
Citation
Chemical Geology, 2009, v. 264 n. 1-4, p. 266-280 How to Cite?
Abstract
In situ U-Pb and Hf-isotope systematics of zircons, mineral chemistry of silicates and whole-rock major-element, trace-element and platinum-group element (PGE) data are reported for five mafic xenoliths (granulites and pyroxenite) in the Hannuoba Cenozoic basalts, North China. Temperature estimates of 859-886 °C suggest that these xenoliths are derived from the lower crust. The whole-rock compositions of the xenoliths show weakly negative Eu anomalies (δEu = 0.67-0.95), high SiO 2/Al 2O 3 (5.80-13.8), low Ir (0.10-0.29 ppb), and wide ranges of Ni (4.5-235 ppm) and La/Nb (1.70-7.64). Most zircons in these samples are structureless and give Paleogene (44.5-47.3 Ma) U-Pb ages; minor populations have Early Mesozoic (210-220 Ma), Late Mesozoic (90 Ma) and Neogene (14 Ma) ages. The fractionation of pyroxene and plagioclase controlled the petrogenesis of the xenoliths, which are interpreted as the products of basaltic underplating and fractionation (cumulates) in Paleogene time (45-47 Ma), with assimilation of some older intermediate crustal components. The Paleogene underplating corresponds in time to lithosphere-scale extension in the North China Craton, leading to the widespread formation of sedimentary basins. Most Paleogene zircons have positive ε Hf (up to + 13.2) with uniform T DM (0.46-0.50 Ga), whereas most Mesozoic zircons have negative ε Hf; this evolution suggests a temporal decrease in the degree of crustal assimilation during the extension of the lithosphere. In addition to complex modification in Early and Late Mesozoic times, the thermal event related to the eruption of the host magmas (ca 14 Ma) also reheated the lower crust beneath the North China Craton. © 2009 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/151284
ISSN
2013 Impact Factor: 3.482
2013 SCImago Journal Rankings: 1.927
ISI Accession Number ID
References

 

Author Affiliations
  1. China University of Geosciences
  2. The University of Hong Kong
  3. Macquarie University
DC FieldValueLanguage
dc.contributor.authorZheng, JPen_US
dc.contributor.authorGriffin, WLen_US
dc.contributor.authorQi, Len_US
dc.contributor.authorO'reilly, SYen_US
dc.contributor.authorSun, Men_US
dc.contributor.authorZheng, Sen_US
dc.contributor.authorPearson, Nen_US
dc.contributor.authorGao, JFen_US
dc.contributor.authorYu, CMen_US
dc.contributor.authorSu, YPen_US
dc.contributor.authorTang, HYen_US
dc.contributor.authorLiu, QSen_US
dc.contributor.authorWu, XLen_US
dc.date.accessioned2012-06-26T06:20:05Z-
dc.date.available2012-06-26T06:20:05Z-
dc.date.issued2009en_US
dc.identifier.citationChemical Geology, 2009, v. 264 n. 1-4, p. 266-280en_US
dc.identifier.issn0009-2541en_US
dc.identifier.urihttp://hdl.handle.net/10722/151284-
dc.description.abstractIn situ U-Pb and Hf-isotope systematics of zircons, mineral chemistry of silicates and whole-rock major-element, trace-element and platinum-group element (PGE) data are reported for five mafic xenoliths (granulites and pyroxenite) in the Hannuoba Cenozoic basalts, North China. Temperature estimates of 859-886 °C suggest that these xenoliths are derived from the lower crust. The whole-rock compositions of the xenoliths show weakly negative Eu anomalies (δEu = 0.67-0.95), high SiO 2/Al 2O 3 (5.80-13.8), low Ir (0.10-0.29 ppb), and wide ranges of Ni (4.5-235 ppm) and La/Nb (1.70-7.64). Most zircons in these samples are structureless and give Paleogene (44.5-47.3 Ma) U-Pb ages; minor populations have Early Mesozoic (210-220 Ma), Late Mesozoic (90 Ma) and Neogene (14 Ma) ages. The fractionation of pyroxene and plagioclase controlled the petrogenesis of the xenoliths, which are interpreted as the products of basaltic underplating and fractionation (cumulates) in Paleogene time (45-47 Ma), with assimilation of some older intermediate crustal components. The Paleogene underplating corresponds in time to lithosphere-scale extension in the North China Craton, leading to the widespread formation of sedimentary basins. Most Paleogene zircons have positive ε Hf (up to + 13.2) with uniform T DM (0.46-0.50 Ga), whereas most Mesozoic zircons have negative ε Hf; this evolution suggests a temporal decrease in the degree of crustal assimilation during the extension of the lithosphere. In addition to complex modification in Early and Late Mesozoic times, the thermal event related to the eruption of the host magmas (ca 14 Ma) also reheated the lower crust beneath the North China Craton. © 2009 Elsevier B.V. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/chemgeoen_US
dc.relation.ispartofChemical Geologyen_US
dc.subjectGranuliteen_US
dc.subjectLithospheric Evolutionen_US
dc.subjectLower Crustal Xenolithen_US
dc.subjectNorth China Cratonen_US
dc.subjectPaleogene Underplatingen_US
dc.subjectPyroxeniteen_US
dc.titleAge and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Cratonen_US
dc.typeArticleen_US
dc.identifier.emailSun, M:minsun@hku.hken_US
dc.identifier.authoritySun, M=rp00780en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.chemgeo.2009.03.011en_US
dc.identifier.scopuseid_2-s2.0-67349132361en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-67349132361&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume264en_US
dc.identifier.issue1-4en_US
dc.identifier.spage266en_US
dc.identifier.epage280en_US
dc.identifier.isiWOS:000267379900022-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridZheng, JP=25026554400en_US
dc.identifier.scopusauthoridGriffin, WL=35229299300en_US
dc.identifier.scopusauthoridQi, L=7202149924en_US
dc.identifier.scopusauthoridO'Reilly, SY=7103188930en_US
dc.identifier.scopusauthoridSun, M=25932315800en_US
dc.identifier.scopusauthoridZheng, S=35294337800en_US
dc.identifier.scopusauthoridPearson, N=7004954526en_US
dc.identifier.scopusauthoridGao, JF=25638167000en_US
dc.identifier.scopusauthoridYu, CM=49061656300en_US
dc.identifier.scopusauthoridSu, YP=15058343800en_US
dc.identifier.scopusauthoridTang, HY=8609003600en_US
dc.identifier.scopusauthoridLiu, QS=49261131100en_US
dc.identifier.scopusauthoridWu, XL=49261287100en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats