File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Assessment and improvement of precise time step integration method

TitleAssessment and improvement of precise time step integration method
Authors
KeywordsComputation Accuracy
Numerical Integration
Numerical Stability
Precise Time Step Integration Method
Issue Date2006
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compstruc
Citation
Computers & Structures, 2006, v. 84 n. 12, p. 779-786 How to Cite?
AbstractIn this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order L and bisection order N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method. © 2006 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/150357
ISSN
2015 Impact Factor: 2.425
2015 SCImago Journal Rankings: 1.710
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWang, Men_US
dc.contributor.authorAu, FTKen_US
dc.date.accessioned2012-06-26T06:03:50Z-
dc.date.available2012-06-26T06:03:50Z-
dc.date.issued2006en_US
dc.identifier.citationComputers & Structures, 2006, v. 84 n. 12, p. 779-786en_US
dc.identifier.issn0045-7949en_US
dc.identifier.urihttp://hdl.handle.net/10722/150357-
dc.description.abstractIn this paper, the numerical stability and accuracy of Precise Time Step Integration Method are discussed in detail. It is shown that the method is conditionally stable and it has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay. However for discretized structural models, it is relatively easy for this time integration scheme to satisfy the stability conditions and required accuracy. Based on the above results, the optimum values of the truncation order L and bisection order N are presented. The Gauss quadrature method is used to improve the accuracy of the Precise Time Step Integration Method. Finally, two numerical examples are presented to show the feasibility of this improvement method. © 2006 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compstrucen_US
dc.relation.ispartofComputers & Structuresen_US
dc.subjectComputation Accuracyen_US
dc.subjectNumerical Integrationen_US
dc.subjectNumerical Stabilityen_US
dc.subjectPrecise Time Step Integration Methoden_US
dc.titleAssessment and improvement of precise time step integration methoden_US
dc.typeArticleen_US
dc.identifier.emailAu, FTK:francis.au@hku.hken_US
dc.identifier.authorityAu, FTK=rp00083en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.compstruc.2006.02.001en_US
dc.identifier.scopuseid_2-s2.0-33646481182en_US
dc.identifier.hkuros123239-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33646481182&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume84en_US
dc.identifier.issue12en_US
dc.identifier.spage779en_US
dc.identifier.epage786en_US
dc.identifier.isiWOS:000237167800003-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridWang, M=7407801843en_US
dc.identifier.scopusauthoridAu, FTK=7005204072en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats