File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: An Elliptic Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillators

TitleAn Elliptic Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillators
Authors
KeywordsElliptic Functions
L-P Method
Strongly Non-Linear Oscillators
Issue Date1997
PublisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-090X
Citation
Nonlinear Dynamics, 1997, v. 12 n. 3, p. 199-213 How to Cite?
AbstractAn elliptic Lindstedt - Poincaré (L-P) method is presented for the steady-state analysis of strongly nonlinear oscillators of the form ẍ + c1x + C3x3 = εf(x, ẋ), in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L-P perturbation procedure. This method can be viewed as a generalization of the L-P method. As an application of this method, three types of the generalized Van der Pol equation with f(x, ẋ) = (Co- C2X2)ẋ are studied in detail.
Persistent Identifierhttp://hdl.handle.net/10722/150092
ISSN
2023 Impact Factor: 5.2
2023 SCImago Journal Rankings: 1.230
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChen, SHen_US
dc.contributor.authorCheung, YKen_US
dc.date.accessioned2012-06-26T06:01:29Z-
dc.date.available2012-06-26T06:01:29Z-
dc.date.issued1997en_US
dc.identifier.citationNonlinear Dynamics, 1997, v. 12 n. 3, p. 199-213en_US
dc.identifier.issn0924-090Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/150092-
dc.description.abstractAn elliptic Lindstedt - Poincaré (L-P) method is presented for the steady-state analysis of strongly nonlinear oscillators of the form ẍ + c1x + C3x3 = εf(x, ẋ), in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L-P perturbation procedure. This method can be viewed as a generalization of the L-P method. As an application of this method, three types of the generalized Van der Pol equation with f(x, ẋ) = (Co- C2X2)ẋ are studied in detail.en_US
dc.languageengen_US
dc.publisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-090Xen_US
dc.relation.ispartofNonlinear Dynamicsen_US
dc.subjectElliptic Functionsen_US
dc.subjectL-P Methoden_US
dc.subjectStrongly Non-Linear Oscillatorsen_US
dc.titleAn Elliptic Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillatorsen_US
dc.typeArticleen_US
dc.identifier.emailCheung, YK:hreccyk@hkucc.hku.hken_US
dc.identifier.authorityCheung, YK=rp00104en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1023/A:1008267817248-
dc.identifier.scopuseid_2-s2.0-0031095817en_US
dc.identifier.hkuros34152-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0031095817&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume12en_US
dc.identifier.issue3en_US
dc.identifier.spage199en_US
dc.identifier.epage213en_US
dc.identifier.isiWOS:A1997WT07900001-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridChen, SH=7410249167en_US
dc.identifier.scopusauthoridCheung, YK=7202111065en_US
dc.identifier.issnl0924-090X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats