File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1023/A:1008267817248
- Scopus: eid_2-s2.0-0031095817
- WOS: WOS:A1997WT07900001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: An Elliptic Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillators
Title | An Elliptic Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillators |
---|---|
Authors | |
Keywords | Elliptic Functions L-P Method Strongly Non-Linear Oscillators |
Issue Date | 1997 |
Publisher | Springer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-090X |
Citation | Nonlinear Dynamics, 1997, v. 12 n. 3, p. 199-213 How to Cite? |
Abstract | An elliptic Lindstedt - Poincaré (L-P) method is presented for the steady-state analysis of strongly nonlinear oscillators of the form ẍ + c1x + C3x3 = εf(x, ẋ), in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L-P perturbation procedure. This method can be viewed as a generalization of the L-P method. As an application of this method, three types of the generalized Van der Pol equation with f(x, ẋ) = (Co- C2X2)ẋ are studied in detail. |
Persistent Identifier | http://hdl.handle.net/10722/150092 |
ISSN | 2023 Impact Factor: 5.2 2023 SCImago Journal Rankings: 1.230 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, SH | en_US |
dc.contributor.author | Cheung, YK | en_US |
dc.date.accessioned | 2012-06-26T06:01:29Z | - |
dc.date.available | 2012-06-26T06:01:29Z | - |
dc.date.issued | 1997 | en_US |
dc.identifier.citation | Nonlinear Dynamics, 1997, v. 12 n. 3, p. 199-213 | en_US |
dc.identifier.issn | 0924-090X | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/150092 | - |
dc.description.abstract | An elliptic Lindstedt - Poincaré (L-P) method is presented for the steady-state analysis of strongly nonlinear oscillators of the form ẍ + c1x + C3x3 = εf(x, ẋ), in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L-P perturbation procedure. This method can be viewed as a generalization of the L-P method. As an application of this method, three types of the generalized Van der Pol equation with f(x, ẋ) = (Co- C2X2)ẋ are studied in detail. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-090X | en_US |
dc.relation.ispartof | Nonlinear Dynamics | en_US |
dc.subject | Elliptic Functions | en_US |
dc.subject | L-P Method | en_US |
dc.subject | Strongly Non-Linear Oscillators | en_US |
dc.title | An Elliptic Lindstedt-Poincaré Method for Certain Strongly Non-Linear Oscillators | en_US |
dc.type | Article | en_US |
dc.identifier.email | Cheung, YK:hreccyk@hkucc.hku.hk | en_US |
dc.identifier.authority | Cheung, YK=rp00104 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1023/A:1008267817248 | - |
dc.identifier.scopus | eid_2-s2.0-0031095817 | en_US |
dc.identifier.hkuros | 34152 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0031095817&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 12 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.spage | 199 | en_US |
dc.identifier.epage | 213 | en_US |
dc.identifier.isi | WOS:A1997WT07900001 | - |
dc.publisher.place | Netherlands | en_US |
dc.identifier.scopusauthorid | Chen, SH=7410249167 | en_US |
dc.identifier.scopusauthorid | Cheung, YK=7202111065 | en_US |
dc.identifier.issnl | 0924-090X | - |