File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators

TitleA modified Lindstedt-Poincaré method for certain strongly non-linear oscillators
Authors
Issue Date1991
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/nlm
Citation
International Journal Of Non-Linear Mechanics, 1991, v. 26 n. 3-4, p. 367-378 How to Cite?
AbstractA modified Lindstedt-Poincaré method is presented for extending the range of the validity of perturbation expansions to strongly non-linear oscillation of single degree-of-freedom systems. A new parameter α = α(ε{lunate}), which diners from Jones' and Burton's, is denned such that the value of α is always kept small regardless of the magnitude of the original parameter ε{lunate}. Therefore, a strongly non-linear system with large parameter ε{lunate} is transformed into a small parameter system with respect to α. This method is suitable for the system with even non-linearities as well as with odd non-linearities. © 1991.
Persistent Identifierhttp://hdl.handle.net/10722/149959
ISSN
2023 Impact Factor: 2.8
2023 SCImago Journal Rankings: 0.800
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorCheung, YKen_US
dc.contributor.authorChen, SHen_US
dc.contributor.authorLau, SLen_US
dc.date.accessioned2012-06-26T06:00:47Z-
dc.date.available2012-06-26T06:00:47Z-
dc.date.issued1991en_US
dc.identifier.citationInternational Journal Of Non-Linear Mechanics, 1991, v. 26 n. 3-4, p. 367-378en_US
dc.identifier.issn0020-7462en_US
dc.identifier.urihttp://hdl.handle.net/10722/149959-
dc.description.abstractA modified Lindstedt-Poincaré method is presented for extending the range of the validity of perturbation expansions to strongly non-linear oscillation of single degree-of-freedom systems. A new parameter α = α(ε{lunate}), which diners from Jones' and Burton's, is denned such that the value of α is always kept small regardless of the magnitude of the original parameter ε{lunate}. Therefore, a strongly non-linear system with large parameter ε{lunate} is transformed into a small parameter system with respect to α. This method is suitable for the system with even non-linearities as well as with odd non-linearities. © 1991.en_US
dc.languageengen_US
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/nlmen_US
dc.relation.ispartofInternational Journal of Non-Linear Mechanicsen_US
dc.titleA modified Lindstedt-Poincaré method for certain strongly non-linear oscillatorsen_US
dc.typeArticleen_US
dc.identifier.emailCheung, YK:hreccyk@hkucc.hku.hken_US
dc.identifier.authorityCheung, YK=rp00104en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0025887981en_US
dc.identifier.volume26en_US
dc.identifier.issue3-4en_US
dc.identifier.spage367en_US
dc.identifier.epage378en_US
dc.identifier.isiWOS:A1991FF12900009-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridCheung, YK=7202111065en_US
dc.identifier.scopusauthoridChen, SH=13303161800en_US
dc.identifier.scopusauthoridLau, SL=7401596228en_US
dc.identifier.issnl0020-7462-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats