File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A non-linear seales method for strongly non-linear oscillators

TitleA non-linear seales method for strongly non-linear oscillators
Authors
KeywordsLimit Cycle
Nonlinear Scales Method
Stability
Strongly Nonlinear Oscillators
Issue Date1995
PublisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-090X
Citation
Nonlinear Dynamics, 1995, v. 7 n. 3, p. 285-299 How to Cite?
AbstractA non-linear seales method is presented for the analysis of strongly non-linear oseillators of the form {Mathematical expression}, where g(x) is an arbitrary non-linear function of the displacement x. We assumed that {Mathematical expression}, where {Mathematical expression}, {Mathematical expression}, and Rn, Snare to be determined in the course of the analysis. This method is suitable for the systems with even non-linearities as well as with odd non-linearities. It can be viewed as a generalization of the two-variable expansion procedure. Using the present method we obtained a modified Krylov-Bogoliubov method. Four numerical examples are presented which served to demonstrate the effectiveness of the present method. © 1995 Kluwer Academic Publishers.
Persistent Identifierhttp://hdl.handle.net/10722/149800
ISSN
2015 Impact Factor: 3.0
2015 SCImago Journal Rankings: 1.511
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXu, Zen_US
dc.contributor.authorCheung, YKen_US
dc.date.accessioned2012-06-26T05:59:51Z-
dc.date.available2012-06-26T05:59:51Z-
dc.date.issued1995en_US
dc.identifier.citationNonlinear Dynamics, 1995, v. 7 n. 3, p. 285-299en_US
dc.identifier.issn0924-090Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/149800-
dc.description.abstractA non-linear seales method is presented for the analysis of strongly non-linear oseillators of the form {Mathematical expression}, where g(x) is an arbitrary non-linear function of the displacement x. We assumed that {Mathematical expression}, where {Mathematical expression}, {Mathematical expression}, and Rn, Snare to be determined in the course of the analysis. This method is suitable for the systems with even non-linearities as well as with odd non-linearities. It can be viewed as a generalization of the two-variable expansion procedure. Using the present method we obtained a modified Krylov-Bogoliubov method. Four numerical examples are presented which served to demonstrate the effectiveness of the present method. © 1995 Kluwer Academic Publishers.en_US
dc.languageengen_US
dc.publisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-090Xen_US
dc.relation.ispartofNonlinear Dynamicsen_US
dc.subjectLimit Cycleen_US
dc.subjectNonlinear Scales Methoden_US
dc.subjectStabilityen_US
dc.subjectStrongly Nonlinear Oscillatorsen_US
dc.titleA non-linear seales method for strongly non-linear oscillatorsen_US
dc.typeArticleen_US
dc.identifier.emailCheung, YK:hreccyk@hkucc.hku.hken_US
dc.identifier.authorityCheung, YK=rp00104en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/BF00046304en_US
dc.identifier.scopuseid_2-s2.0-0005194232en_US
dc.identifier.volume7en_US
dc.identifier.issue3en_US
dc.identifier.spage285en_US
dc.identifier.epage299en_US
dc.identifier.isiWOS:A1995QQ74900002-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridXu, Z=8925299600en_US
dc.identifier.scopusauthoridCheung, YK=7202111065en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats