File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Stability and numerical dispersion of high order symplectic schemes
  • Basic View
  • Metadata View
  • XML View
TitleStability and numerical dispersion of high order symplectic schemes
 
AuthorsHuang, Z3
Sha, W1
Wu, X2 3
Chen, M2
Kuang, X3
 
KeywordsHamiltonian function
High order symplectic schemes
Stability and numerical dispersion
Symplectic integrator technique
 
Issue Date2010
 
CitationJisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88 [How to Cite?]
 
AbstractEuler-Hamilton equations are provided using Hamiltonian function of Maxwell's equations. High order symplectic schemes of three-dimensional time-domain Maxwell's equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods.
 
ISSN1001-246X
2012 SCImago Journal Rankings: 0.241
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorHuang, Z
 
dc.contributor.authorSha, W
 
dc.contributor.authorWu, X
 
dc.contributor.authorChen, M
 
dc.contributor.authorKuang, X
 
dc.date.accessioned2012-06-20T06:16:14Z
 
dc.date.available2012-06-20T06:16:14Z
 
dc.date.issued2010
 
dc.description.abstractEuler-Hamilton equations are provided using Hamiltonian function of Maxwell's equations. High order symplectic schemes of three-dimensional time-domain Maxwell's equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationJisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88 [How to Cite?]
 
dc.identifier.epage88
 
dc.identifier.issn1001-246X
2012 SCImago Journal Rankings: 0.241
 
dc.identifier.issue1
 
dc.identifier.scopuseid_2-s2.0-77649221335
 
dc.identifier.spage82
 
dc.identifier.urihttp://hdl.handle.net/10722/148906
 
dc.identifier.volume27
 
dc.languageeng
 
dc.relation.ispartofJisuan Wuli/Chinese Journal of Computational Physics
 
dc.relation.referencesReferences in Scopus
 
dc.subjectHamiltonian function
 
dc.subjectHigh order symplectic schemes
 
dc.subjectStability and numerical dispersion
 
dc.subjectSymplectic integrator technique
 
dc.titleStability and numerical dispersion of high order symplectic schemes
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Huang, Z</contributor.author>
<contributor.author>Sha, W</contributor.author>
<contributor.author>Wu, X</contributor.author>
<contributor.author>Chen, M</contributor.author>
<contributor.author>Kuang, X</contributor.author>
<date.accessioned>2012-06-20T06:16:14Z</date.accessioned>
<date.available>2012-06-20T06:16:14Z</date.available>
<date.issued>2010</date.issued>
<identifier.citation>Jisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88</identifier.citation>
<identifier.issn>1001-246X</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/148906</identifier.uri>
<description.abstract>Euler-Hamilton equations are provided using Hamiltonian function of Maxwell&apos;s equations. High order symplectic schemes of three-dimensional time-domain Maxwell&apos;s equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods.</description.abstract>
<language>eng</language>
<relation.ispartof>Jisuan Wuli/Chinese Journal of Computational Physics</relation.ispartof>
<subject>Hamiltonian function</subject>
<subject>High order symplectic schemes</subject>
<subject>Stability and numerical dispersion</subject>
<subject>Symplectic integrator technique</subject>
<title>Stability and numerical dispersion of high order symplectic schemes</title>
<type>Article</type>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.scopus>eid_2-s2.0-77649221335</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-77649221335&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>27</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>82</identifier.spage>
<identifier.epage>88</identifier.epage>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Hefei Teachers College
  3. Anhui University