File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Stability and numerical dispersion of high order symplectic schemes

TitleStability and numerical dispersion of high order symplectic schemes
Authors
KeywordsHamiltonian function
High order symplectic schemes
Stability and numerical dispersion
Symplectic integrator technique
Issue Date2010
Citation
Jisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88 How to Cite?
Abstract
Euler-Hamilton equations are provided using Hamiltonian function of Maxwell's equations. High order symplectic schemes of three-dimensional time-domain Maxwell's equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods.
Persistent Identifierhttp://hdl.handle.net/10722/148906
ISSN
2013 SCImago Journal Rankings: 0.274
References

 

DC FieldValueLanguage
dc.contributor.authorHuang, Zen_HK
dc.contributor.authorSha, Wen_HK
dc.contributor.authorWu, Xen_HK
dc.contributor.authorChen, Men_HK
dc.contributor.authorKuang, Xen_HK
dc.date.accessioned2012-06-20T06:16:14Z-
dc.date.available2012-06-20T06:16:14Z-
dc.date.issued2010en_HK
dc.identifier.citationJisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88en_HK
dc.identifier.issn1001-246Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/148906-
dc.description.abstractEuler-Hamilton equations are provided using Hamiltonian function of Maxwell's equations. High order symplectic schemes of three-dimensional time-domain Maxwell's equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods.en_HK
dc.languageengen_US
dc.relation.ispartofJisuan Wuli/Chinese Journal of Computational Physicsen_HK
dc.subjectHamiltonian functionen_HK
dc.subjectHigh order symplectic schemesen_HK
dc.subjectStability and numerical dispersionen_HK
dc.subjectSymplectic integrator techniqueen_HK
dc.titleStability and numerical dispersion of high order symplectic schemesen_HK
dc.typeArticleen_HK
dc.identifier.emailSha, W:shawei@hku.hken_HK
dc.identifier.authoritySha, W=rp01605en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-77649221335en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77649221335&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume27en_HK
dc.identifier.issue1en_HK
dc.identifier.spage82en_HK
dc.identifier.epage88en_HK
dc.identifier.scopusauthoridHuang, Z=12243904200en_HK
dc.identifier.scopusauthoridSha, W=34267903200en_HK
dc.identifier.scopusauthoridWu, X=7407066038en_HK
dc.identifier.scopusauthoridChen, M=24560485600en_HK
dc.identifier.scopusauthoridKuang, X=7006865070en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats