File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Stability and numerical dispersion of high order symplectic schemes
Title | Stability and numerical dispersion of high order symplectic schemes |
---|---|
Authors | |
Keywords | Hamiltonian function High order symplectic schemes Stability and numerical dispersion Symplectic integrator technique |
Issue Date | 2010 |
Citation | Jisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88 How to Cite? |
Abstract | Euler-Hamilton equations are provided using Hamiltonian function of Maxwell's equations. High order symplectic schemes of three-dimensional time-domain Maxwell's equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods. |
Persistent Identifier | http://hdl.handle.net/10722/148906 |
ISSN | 2023 SCImago Journal Rankings: 0.237 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Z | en_HK |
dc.contributor.author | Sha, W | en_HK |
dc.contributor.author | Wu, X | en_HK |
dc.contributor.author | Chen, M | en_HK |
dc.contributor.author | Kuang, X | en_HK |
dc.date.accessioned | 2012-06-20T06:16:14Z | - |
dc.date.available | 2012-06-20T06:16:14Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | Jisuan Wuli/Chinese Journal Of Computational Physics, 2010, v. 27 n. 1, p. 82-88 | en_HK |
dc.identifier.issn | 1001-246X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/148906 | - |
dc.description.abstract | Euler-Hamilton equations are provided using Hamiltonian function of Maxwell's equations. High order symplectic schemes of three-dimensional time-domain Maxwell's equations are constructed with symplectic integrator technique combined with high order staggered difference. The method is used to analyzing stability and numerical dispersion of high order time-domain methods and symplectic schemes with matrix analysis and tensor product. It confirms accuracy of the scheme and super ability compared with other time-domain methods. | en_HK |
dc.language | eng | en_US |
dc.relation.ispartof | Jisuan Wuli/Chinese Journal of Computational Physics | en_HK |
dc.subject | Hamiltonian function | en_HK |
dc.subject | High order symplectic schemes | en_HK |
dc.subject | Stability and numerical dispersion | en_HK |
dc.subject | Symplectic integrator technique | en_HK |
dc.title | Stability and numerical dispersion of high order symplectic schemes | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Sha, W:shawei@hku.hk | en_HK |
dc.identifier.authority | Sha, W=rp01605 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.scopus | eid_2-s2.0-77649221335 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-77649221335&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 27 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 82 | en_HK |
dc.identifier.epage | 88 | en_HK |
dc.identifier.scopusauthorid | Huang, Z=12243904200 | en_HK |
dc.identifier.scopusauthorid | Sha, W=34267903200 | en_HK |
dc.identifier.scopusauthorid | Wu, X=7407066038 | en_HK |
dc.identifier.scopusauthorid | Chen, M=24560485600 | en_HK |
dc.identifier.scopusauthorid | Kuang, X=7006865070 | en_HK |
dc.identifier.issnl | 1001-246X | - |