File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Scheme of symplectic FDTD using propagation technique

TitleScheme of symplectic FDTD using propagation technique
Authors
KeywordsNumerical dispersion
Propagation technique
Stability
Symplectic finite difference time domain
Issue Date2009
Citation
Xitong Fangzhen Xuebao / Journal Of System Simulation, 2009, v. 21 n. 9, p. 2521-2523+2526 How to Cite?
AbstractIt is especially important to preserve some characters of the original system in numerical simulating three-dimensional time domain Maxwell's Equations. The Maxwell's equations were written as normal Hamilton equations using functional variation method. Maxwell's equations in the time direction were discretized using sympletic propagation technique and then the equations in the spatial direction with fourth-order finite difference approximations were evaluated to construct symplectic finite difference time domain (S-FDTD) scheme. The stability and numerical dispersion analysis were included. Numerical results show the high efficiency and accuracy of the S-FDTD scheme.
Persistent Identifierhttp://hdl.handle.net/10722/148896
ISSN
2023 SCImago Journal Rankings: 0.219
References

 

DC FieldValueLanguage
dc.contributor.authorHuang, ZXen_HK
dc.contributor.authorWu, XLen_HK
dc.contributor.authorChen, MSen_HK
dc.contributor.authorSha, Wen_HK
dc.contributor.authorKuang, XJen_HK
dc.date.accessioned2012-06-20T06:16:10Z-
dc.date.available2012-06-20T06:16:10Z-
dc.date.issued2009en_HK
dc.identifier.citationXitong Fangzhen Xuebao / Journal Of System Simulation, 2009, v. 21 n. 9, p. 2521-2523+2526en_HK
dc.identifier.issn1004-731Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/148896-
dc.description.abstractIt is especially important to preserve some characters of the original system in numerical simulating three-dimensional time domain Maxwell's Equations. The Maxwell's equations were written as normal Hamilton equations using functional variation method. Maxwell's equations in the time direction were discretized using sympletic propagation technique and then the equations in the spatial direction with fourth-order finite difference approximations were evaluated to construct symplectic finite difference time domain (S-FDTD) scheme. The stability and numerical dispersion analysis were included. Numerical results show the high efficiency and accuracy of the S-FDTD scheme.en_HK
dc.languageengen_US
dc.relation.ispartofXitong Fangzhen Xuebao / Journal of System Simulationen_HK
dc.subjectNumerical dispersionen_HK
dc.subjectPropagation techniqueen_HK
dc.subjectStabilityen_HK
dc.subjectSymplectic finite difference time domainen_HK
dc.titleScheme of symplectic FDTD using propagation techniqueen_HK
dc.typeArticleen_HK
dc.identifier.emailSha, W:shawei@hku.hken_HK
dc.identifier.authoritySha, W=rp01605en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-65749109722en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-65749109722&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume21en_HK
dc.identifier.issue9en_HK
dc.identifier.spage2521en_HK
dc.identifier.epage2523+2526en_HK
dc.identifier.scopusauthoridHuang, ZX=12243904200en_HK
dc.identifier.scopusauthoridWu, XL=7407066038en_HK
dc.identifier.scopusauthoridChen, MS=24560485600en_HK
dc.identifier.scopusauthoridSha, W=34267903200en_HK
dc.identifier.scopusauthoridKuang, XJ=7006865070en_HK
dc.identifier.issnl1004-731X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats