File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Scheme of symplectic FDTD
Title | Scheme of symplectic FDTD |
---|---|
Authors | |
Keywords | Numerical dispersion Stability Symplectic finite difference time domain Symplectic propagation technique |
Issue Date | 2009 |
Citation | Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering And Electronics, 2009, v. 31 n. 2, p. 456-458 How to Cite? |
Abstract | The Maxwell's equations are written as normal Hamilton equations using functional variation method. We discretize Maxwell's equations using sympletic propagation technique combined with fourth-order finite difference approximations to construct symplectic finite difference time domain (SFDTD) scheme. The stability and numerical dispersion analysis are presented. The applications of the scheme in electromagnetic scattering are also included. Numerical results are given to show the high efficiency and accuracy of the SFDTD scheme. |
Persistent Identifier | http://hdl.handle.net/10722/148894 |
ISSN | 2023 SCImago Journal Rankings: 0.221 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, ZX | en_HK |
dc.contributor.author | Sha, W | en_HK |
dc.contributor.author | Wu, XL | en_HK |
dc.contributor.author | Chen, MS | en_HK |
dc.contributor.author | Kuang, XJ | en_HK |
dc.date.accessioned | 2012-06-20T06:16:10Z | - |
dc.date.available | 2012-06-20T06:16:10Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering And Electronics, 2009, v. 31 n. 2, p. 456-458 | en_HK |
dc.identifier.issn | 1001-506X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/148894 | - |
dc.description.abstract | The Maxwell's equations are written as normal Hamilton equations using functional variation method. We discretize Maxwell's equations using sympletic propagation technique combined with fourth-order finite difference approximations to construct symplectic finite difference time domain (SFDTD) scheme. The stability and numerical dispersion analysis are presented. The applications of the scheme in electromagnetic scattering are also included. Numerical results are given to show the high efficiency and accuracy of the SFDTD scheme. | en_HK |
dc.language | eng | en_US |
dc.relation.ispartof | Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics | en_HK |
dc.subject | Numerical dispersion | en_HK |
dc.subject | Stability | en_HK |
dc.subject | Symplectic finite difference time domain | en_HK |
dc.subject | Symplectic propagation technique | en_HK |
dc.title | Scheme of symplectic FDTD | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Sha, W:shawei@hku.hk | en_HK |
dc.identifier.authority | Sha, W=rp01605 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.scopus | eid_2-s2.0-62749168283 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-62749168283&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 31 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 456 | en_HK |
dc.identifier.epage | 458 | en_HK |
dc.identifier.scopusauthorid | Huang, ZX=12243904200 | en_HK |
dc.identifier.scopusauthorid | Sha, W=34267903200 | en_HK |
dc.identifier.scopusauthorid | Wu, XL=7407066038 | en_HK |
dc.identifier.scopusauthorid | Chen, MS=24560485600 | en_HK |
dc.identifier.scopusauthorid | Kuang, XJ=7006865070 | en_HK |
dc.identifier.issnl | 1001-506X | - |