File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Scheme of symplectic FDTD

TitleScheme of symplectic FDTD
Authors
KeywordsNumerical dispersion
Stability
Symplectic finite difference time domain
Symplectic propagation technique
Issue Date2009
Citation
Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering And Electronics, 2009, v. 31 n. 2, p. 456-458 How to Cite?
AbstractThe Maxwell's equations are written as normal Hamilton equations using functional variation method. We discretize Maxwell's equations using sympletic propagation technique combined with fourth-order finite difference approximations to construct symplectic finite difference time domain (SFDTD) scheme. The stability and numerical dispersion analysis are presented. The applications of the scheme in electromagnetic scattering are also included. Numerical results are given to show the high efficiency and accuracy of the SFDTD scheme.
Persistent Identifierhttp://hdl.handle.net/10722/148894
ISSN
2023 SCImago Journal Rankings: 0.221
References

 

DC FieldValueLanguage
dc.contributor.authorHuang, ZXen_HK
dc.contributor.authorSha, Wen_HK
dc.contributor.authorWu, XLen_HK
dc.contributor.authorChen, MSen_HK
dc.contributor.authorKuang, XJen_HK
dc.date.accessioned2012-06-20T06:16:10Z-
dc.date.available2012-06-20T06:16:10Z-
dc.date.issued2009en_HK
dc.identifier.citationXi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering And Electronics, 2009, v. 31 n. 2, p. 456-458en_HK
dc.identifier.issn1001-506Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/148894-
dc.description.abstractThe Maxwell's equations are written as normal Hamilton equations using functional variation method. We discretize Maxwell's equations using sympletic propagation technique combined with fourth-order finite difference approximations to construct symplectic finite difference time domain (SFDTD) scheme. The stability and numerical dispersion analysis are presented. The applications of the scheme in electromagnetic scattering are also included. Numerical results are given to show the high efficiency and accuracy of the SFDTD scheme.en_HK
dc.languageengen_US
dc.relation.ispartofXi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronicsen_HK
dc.subjectNumerical dispersionen_HK
dc.subjectStabilityen_HK
dc.subjectSymplectic finite difference time domainen_HK
dc.subjectSymplectic propagation techniqueen_HK
dc.titleScheme of symplectic FDTDen_HK
dc.typeArticleen_HK
dc.identifier.emailSha, W:shawei@hku.hken_HK
dc.identifier.authoritySha, W=rp01605en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-62749168283en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-62749168283&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume31en_HK
dc.identifier.issue2en_HK
dc.identifier.spage456en_HK
dc.identifier.epage458en_HK
dc.identifier.scopusauthoridHuang, ZX=12243904200en_HK
dc.identifier.scopusauthoridSha, W=34267903200en_HK
dc.identifier.scopusauthoridWu, XL=7407066038en_HK
dc.identifier.scopusauthoridChen, MS=24560485600en_HK
dc.identifier.scopusauthoridKuang, XJ=7006865070en_HK
dc.identifier.issnl1001-506X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats