File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Survey on symplectic finite-difference time-domain schemes for Maxwell's equations
  • Basic View
  • Metadata View
  • XML View
TitleSurvey on symplectic finite-difference time-domain schemes for Maxwell's equations
 
AuthorsSha, W1
Huang, Z1
Chen, M1
Wu, X1
 
KeywordsIndex Terms - High-order differences
Maxwell's equations
Numerical stability and dispersion
Symplectic integrators
 
Issue Date2008
 
CitationIeee Transactions On Antennas And Propagation, 2008, v. 56 n. 2, p. 493-500 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TAP.2007.915444
 
AbstractTo discretize Maxwell's equations, a variety of high-order symplectic finite-difference time-domain (p, q) schemes, which use th-order symplectic integration time stepping and th-order staggered space differencing, are surveyed. First, the order conditions for the symplectic integrators are derived. Second, the comparisons of numerical stability, dispersion, and energy-conservation are provided between the high-order symplectic schemes and other high-order time approaches. Finally, these symplectic schemes are studied by using different space and time strategies. According to our survey, high-order time schemes for matching high-order space schemes are required for optimum electromagnetic simulation. Numerical experiments have been conducted on radiation of electric dipole and wideband S-parameter extraction of dielectric-filled waveguide. The results demonstrate that the high-order symplectic scheme can obtain satisfying numerical solutions under high Courant-Friedrichs-Levy number and coarse grid conditions. © 2008 IEEE.
 
ISSN0018-926X
2012 Impact Factor: 2.332
2012 SCImago Journal Rankings: 2.102
 
DOIhttp://dx.doi.org/10.1109/TAP.2007.915444
 
ISI Accession Number IDWOS:000253086900023
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorSha, W
 
dc.contributor.authorHuang, Z
 
dc.contributor.authorChen, M
 
dc.contributor.authorWu, X
 
dc.date.accessioned2012-06-20T06:16:07Z
 
dc.date.available2012-06-20T06:16:07Z
 
dc.date.issued2008
 
dc.description.abstractTo discretize Maxwell's equations, a variety of high-order symplectic finite-difference time-domain (p, q) schemes, which use th-order symplectic integration time stepping and th-order staggered space differencing, are surveyed. First, the order conditions for the symplectic integrators are derived. Second, the comparisons of numerical stability, dispersion, and energy-conservation are provided between the high-order symplectic schemes and other high-order time approaches. Finally, these symplectic schemes are studied by using different space and time strategies. According to our survey, high-order time schemes for matching high-order space schemes are required for optimum electromagnetic simulation. Numerical experiments have been conducted on radiation of electric dipole and wideband S-parameter extraction of dielectric-filled waveguide. The results demonstrate that the high-order symplectic scheme can obtain satisfying numerical solutions under high Courant-Friedrichs-Levy number and coarse grid conditions. © 2008 IEEE.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationIeee Transactions On Antennas And Propagation, 2008, v. 56 n. 2, p. 493-500 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TAP.2007.915444
 
dc.identifier.doihttp://dx.doi.org/10.1109/TAP.2007.915444
 
dc.identifier.epage500
 
dc.identifier.isiWOS:000253086900023
 
dc.identifier.issn0018-926X
2012 Impact Factor: 2.332
2012 SCImago Journal Rankings: 2.102
 
dc.identifier.issue2
 
dc.identifier.scopuseid_2-s2.0-40549128373
 
dc.identifier.spage493
 
dc.identifier.urihttp://hdl.handle.net/10722/148886
 
dc.identifier.volume56
 
dc.languageeng
 
dc.publisher.placeUnited States
 
dc.relation.ispartofIEEE Transactions on Antennas and Propagation
 
dc.relation.referencesReferences in Scopus
 
dc.subjectIndex Terms - High-order differences
 
dc.subjectMaxwell's equations
 
dc.subjectNumerical stability and dispersion
 
dc.subjectSymplectic integrators
 
dc.titleSurvey on symplectic finite-difference time-domain schemes for Maxwell's equations
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Sha, W</contributor.author>
<contributor.author>Huang, Z</contributor.author>
<contributor.author>Chen, M</contributor.author>
<contributor.author>Wu, X</contributor.author>
<date.accessioned>2012-06-20T06:16:07Z</date.accessioned>
<date.available>2012-06-20T06:16:07Z</date.available>
<date.issued>2008</date.issued>
<identifier.citation>Ieee Transactions On Antennas And Propagation, 2008, v. 56 n. 2, p. 493-500</identifier.citation>
<identifier.issn>0018-926X</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/148886</identifier.uri>
<description.abstract>To discretize Maxwell&apos;s equations, a variety of high-order symplectic finite-difference time-domain (p, q) schemes, which use th-order symplectic integration time stepping and th-order staggered space differencing, are surveyed. First, the order conditions for the symplectic integrators are derived. Second, the comparisons of numerical stability, dispersion, and energy-conservation are provided between the high-order symplectic schemes and other high-order time approaches. Finally, these symplectic schemes are studied by using different space and time strategies. According to our survey, high-order time schemes for matching high-order space schemes are required for optimum electromagnetic simulation. Numerical experiments have been conducted on radiation of electric dipole and wideband S-parameter extraction of dielectric-filled waveguide. The results demonstrate that the high-order symplectic scheme can obtain satisfying numerical solutions under high Courant-Friedrichs-Levy number and coarse grid conditions. &#169; 2008 IEEE.</description.abstract>
<language>eng</language>
<relation.ispartof>IEEE Transactions on Antennas and Propagation</relation.ispartof>
<subject>Index Terms - High-order differences</subject>
<subject>Maxwell&apos;s equations</subject>
<subject>Numerical stability and dispersion</subject>
<subject>Symplectic integrators</subject>
<title>Survey on symplectic finite-difference time-domain schemes for Maxwell&apos;s equations</title>
<type>Article</type>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1109/TAP.2007.915444</identifier.doi>
<identifier.scopus>eid_2-s2.0-40549128373</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-40549128373&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>56</identifier.volume>
<identifier.issue>2</identifier.issue>
<identifier.spage>493</identifier.spage>
<identifier.epage>500</identifier.epage>
<identifier.isi>WOS:000253086900023</identifier.isi>
<publisher.place>United States</publisher.place>
</item>
Author Affiliations
  1. Anhui University