File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Survey on symplectic finite-difference time-domain schemes for Maxwell's equations

TitleSurvey on symplectic finite-difference time-domain schemes for Maxwell's equations
Authors
KeywordsIndex Terms - High-order differences
Maxwell's equations
Numerical stability and dispersion
Symplectic integrators
Issue Date2008
Citation
Ieee Transactions On Antennas And Propagation, 2008, v. 56 n. 2, p. 493-500 How to Cite?
Abstract
To discretize Maxwell's equations, a variety of high-order symplectic finite-difference time-domain (p, q) schemes, which use th-order symplectic integration time stepping and th-order staggered space differencing, are surveyed. First, the order conditions for the symplectic integrators are derived. Second, the comparisons of numerical stability, dispersion, and energy-conservation are provided between the high-order symplectic schemes and other high-order time approaches. Finally, these symplectic schemes are studied by using different space and time strategies. According to our survey, high-order time schemes for matching high-order space schemes are required for optimum electromagnetic simulation. Numerical experiments have been conducted on radiation of electric dipole and wideband S-parameter extraction of dielectric-filled waveguide. The results demonstrate that the high-order symplectic scheme can obtain satisfying numerical solutions under high Courant-Friedrichs-Levy number and coarse grid conditions. © 2008 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/148886
ISSN
2013 Impact Factor: 2.459
2013 SCImago Journal Rankings: 1.837
ISI Accession Number ID
References

 

Author Affiliations
  1. Anhui University
DC FieldValueLanguage
dc.contributor.authorSha, Wen_HK
dc.contributor.authorHuang, Zen_HK
dc.contributor.authorChen, Men_HK
dc.contributor.authorWu, Xen_HK
dc.date.accessioned2012-06-20T06:16:07Z-
dc.date.available2012-06-20T06:16:07Z-
dc.date.issued2008en_HK
dc.identifier.citationIeee Transactions On Antennas And Propagation, 2008, v. 56 n. 2, p. 493-500en_HK
dc.identifier.issn0018-926Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/148886-
dc.description.abstractTo discretize Maxwell's equations, a variety of high-order symplectic finite-difference time-domain (p, q) schemes, which use th-order symplectic integration time stepping and th-order staggered space differencing, are surveyed. First, the order conditions for the symplectic integrators are derived. Second, the comparisons of numerical stability, dispersion, and energy-conservation are provided between the high-order symplectic schemes and other high-order time approaches. Finally, these symplectic schemes are studied by using different space and time strategies. According to our survey, high-order time schemes for matching high-order space schemes are required for optimum electromagnetic simulation. Numerical experiments have been conducted on radiation of electric dipole and wideband S-parameter extraction of dielectric-filled waveguide. The results demonstrate that the high-order symplectic scheme can obtain satisfying numerical solutions under high Courant-Friedrichs-Levy number and coarse grid conditions. © 2008 IEEE.en_HK
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Antennas and Propagationen_HK
dc.subjectIndex Terms - High-order differencesen_HK
dc.subjectMaxwell's equationsen_HK
dc.subjectNumerical stability and dispersionen_HK
dc.subjectSymplectic integratorsen_HK
dc.titleSurvey on symplectic finite-difference time-domain schemes for Maxwell's equationsen_HK
dc.typeArticleen_HK
dc.identifier.emailSha, W:shawei@hku.hken_HK
dc.identifier.authoritySha, W=rp01605en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/TAP.2007.915444en_HK
dc.identifier.scopuseid_2-s2.0-40549128373en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-40549128373&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume56en_HK
dc.identifier.issue2en_HK
dc.identifier.spage493en_HK
dc.identifier.epage500en_HK
dc.identifier.isiWOS:000253086900023-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridSha, W=34267903200en_HK
dc.identifier.scopusauthoridHuang, Z=12243904200en_HK
dc.identifier.scopusauthoridChen, M=24560485600en_HK
dc.identifier.scopusauthoridWu, X=7407066038en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats